Christoph Wockel

May 24, 2009

1 Higher dimensional covers

(Joint work with Sven Porst & Chenchang Zhu)

Motivation:

Categorification of structure groups for gauge theories.

Notion of cover: X(n-1)-connected space

 $n - cover: a: Y \to X$ fibration with $\pi_k(a)$ iso for $k \neq n, \ \pi_n(Y) = 0$

Construction:

For characteristic map $X \xrightarrow{f} K(\pi_n, n)$ iso on π_n ,

 $Y = f^*(PK(\pi_n, n))$

the pullback of the path loop fibration. This is an n-cover of X. This is unsatisfactory from a group perspective.

Example:

2 A simple but instructive example: n = 1

For G a connected Lie group (or also a topological group), consider the simply connected cover

$$\pi_1 \hookrightarrow \tilde{G} \twoheadrightarrow G$$

This is

• a π_1 -principal bundle

• a central extension of G by π_1

Now we know from group cohomology that \tilde{G} is equivalent to $\pi_1 \times_{\theta_1} G$, which is the set $\pi_1 \times G$, endowed with the group multiplication

$$(a,g) \cdot (b,h) = (a+b+\theta_1(g,h), g \cdot h)$$

for some function $\theta_1: G \times G \to \pi_1$

- associativity requires: $\theta_1(g,h) + \theta_1(gh,k) = \theta_1(g,hk) + \theta_1(h,k)$
- $\theta_1(g,e) = \theta_1(e,g) = 0$ implies that (0,e) is a unit

This defines the group structure $\pi_1 \times_{\theta_1} G$, but how about the smooth structure?

Assume that $\theta_1 |_{U \times U}$ is smooth on a unit neighborhood $U \subset G$, then θ_1 gives rise to a Čech cohomology class

$$[\tau \theta_1] \in \check{H}^1(G, \pi_1)$$

Endowing $\pi_1 \times_{\theta_1} G$ with the topology making $\pi_1 \times_{\theta_1} G \xrightarrow{pr_2} G$ a π_1 -principal bundle with the characteristic class $[\tau \theta_1]$ yields a Lie group topology on $\pi_1 \times_{\theta_1} G$ such that

 $\pi_1 \hookrightarrow \pi_1 \times_{\theta_1} G \twoheadrightarrow G$

is equivalent to \tilde{G} as a central extension.

3 Construction of θ_1

For each $g \in G$, choose a smooth path α_g , connecting the identity e with g, i.e., a section $\alpha : G \to PG$ of the evaluation map $ev : PG \to G$, where PG is the smooth path space of G (w.l.o.g. we can assume α to be smooth on a unit neighbourhood). Then we can interpret α as a map from G to the group C_1 of singular 1-chains on G, and thus we may take its group differential $\mathsf{d_{gp}} \alpha$. The crucial observation is that $\mathsf{d_{gp}} \alpha$ takes values in the subgroup of 1-cycles Z_1 , instead of C_1 (cf. Figure 1). With this we set $\theta_1 := q \circ (\mathsf{d_{gp}} \alpha) : G \times G \to \pi_1$, where $q : Z_1 \to H_1 \cong \pi_1$ is the canonical quotient map. From this it is obvious that θ_1 is a cocycle.

Theorem 1. $[\theta_1]$ is universal for 2-cocycles f which vanishes on some unit neighborhood, *i.e.*,

$$\operatorname{Hom}(\pi_1, A) \to H^1_{\operatorname{gp}}(G, A), \quad \varphi \mapsto [\varphi \circ \theta_1]$$

is bijective for each discrete abelian group A.

• Use standard convering theory for proof. In particular, the path lifting property (or parallel transport).

$$(\mathbf{d}_{\mathrm{gp}}\,\alpha)(g,h) = \alpha_g - \alpha_{gh} + g.\alpha_h =$$

Figure 1: $(d_{gp} \alpha)(g, h)$ is a closed 1-cycle in G

• $H^n_{gp}(G, A)$: locally smooth group cohomology

Upshot: The universal locally constant 2-cocycle θ_1 describes simply connected covers! \rightsquigarrow We shall take this as the fundamental property for a generalisation to higher dimensions.

4 Construction of θ_2

Now assume that G is simply connected. Then we find for each $g, h \in G$ a (smooth) map $\beta_{g,h} : \Delta^2 \to G$ such that $\partial b_{g,h} = (\mathsf{d}_{gp} \alpha)(g,h)$ (cf. Figure 2).

Figure 2:
$$\partial b_{g,h} = (\mathsf{d}_{\mathsf{gp}} \alpha)(g,h)$$

As before, we observe that $(\mathsf{d}_{gp}\beta)(g,h,k)$ is a 2-cycle in G (cf. Figure 3) and we set $\theta_2 := q \circ (\mathsf{d}_{gp}\beta) : G^3 \to \pi_2$. Again, it is obviously true that θ_2 defines a group 3-cocycle. Assuming w.l.o.g. that $\beta_{g,h}$ depends smoothly on g and h on some unit neighbourhood and thus that θ_2 is constant on some unit neighbourhood.

Theorem 2. $[\theta_2] \in H^3_{gp}(G, \pi_2(G))$ is universal for locally constant 3-cocycles.

- Proof use path lifting (parallel transport) in 2-bundles.
- Question: To what extend describes θ_2 a 2-connected covering of G?
- algebraically: θ_2 defines and extension of 2-groups

$$B\pi_2 \to \mathcal{G}_{\theta_2} \to G$$

Figure 3: $(d_{gp} \beta)(g, h, k)$ is a closed 2-cycle in G

• topologically: since θ_2 is constant on a unit neighbourhood, it gives rise to a Čech 2-cocycle $\tau \theta_2$, which leads to a principal $B\pi_2$ -2-bundle by the next theorem.

Theorem 3. Principal \mathcal{G} -2-bundles (for \mathcal{G} a strict Lie 2-group) over G are classified by $\check{H}(G,\mathcal{G})$.

In particular, if \mathcal{G} is $B\pi_2$, then $\check{H}(G,\mathcal{G}) \cong \check{H}^2(G,\pi_2)$ and $[\tau\theta_2] \in \check{H}^2(G,\pi_2)$ gives rise to a principal $B\pi_2$ -2-bundle $\mathcal{P}_{\tau\theta_2} \to G$. What would be nice is Lie 2-group structure on $P_{\tau\theta_2}$, but that is too much to ask for! Remedy: invert Morita morphisms of bundles obtain a weak group object in the category of smooth stacks, i.e., a stacky Lie group.

5 What is this good for?

- \mathcal{G}_{θ_2} provides a generalisation of Lie's Third Theorem to Banach–Lie algebras, (which fails in general when trying to integrate Banach–Lie algebras to Banach–Lie groups).
- Generalisation to higher dimensions in possible, giving a cohomology class $[\theta_n] \in H^{n+1}_{gp}(G, \pi_n)$, which is universal for locally constant (n + 1)-group cocycles \rightsquigarrow relation to string group models!
- For G compact, simple and simply connected, the transgression map τ : $H^4_{\rm gp}(G,\pi_3) \rightarrow \check{H}^3(G,\pi_3)$ may be understood in terms of the Dijkgraaf-Witten correspondence.