A bundle-theoretic perspective to Kac–Moody groups

Christoph Wockel

May 31, 2007

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

Outline

Kac–Moody algebras and groups

Central extensions and cocycles

Cocycles for twisted loop algebras and -groups

Computation of homotopy groups

Kac-Moody algebras

Generalisations of simple, finite-dimensional, complex Lie algebras:

- $A \in Mat_n(\mathbb{Z})$: generalised Cartan matrix
- ▶ g(A) : assoc. Kac–Moody algebra (generators and relations)

- $\mathfrak{g}(A)$ finite-dimensional $\Leftrightarrow A$ is positive definite
- $\mathfrak{g}(A)$ affine : $\Leftrightarrow A$ positive semidefinite and $\mathsf{rk}(A) = n 1$

Kac-Moody algebras

Generalisations of simple, finite-dimensional, complex Lie algebras:

- $A \in Mat_n(\mathbb{Z})$: generalised Cartan matrix
- ▶ g(A) : assoc. Kac–Moody algebra (generators and relations)
- $\mathfrak{g}(A)$ finite-dimensional $\Leftrightarrow A$ is positive definite
- $\mathfrak{g}(A)$ affine : $\Leftrightarrow A$ positive semidefinite and $\operatorname{rk}(A) = n 1$ Realisation in the affine case:
 - $\mathfrak{k} := \mathfrak{g}(\overline{A})$ finite-dimensional, simple $(\overline{A}: \text{ generic from } A)$
 - $L\mathfrak{k} := \mathbb{C}[t, t^{-1}] \otimes \mathfrak{k}$
 - $\sigma \in Aut(\mathfrak{k})$ with $\sigma^m = \mathbb{1}$ for $m \in \{1, 2, 3\}$
 - ▶ Set $\varepsilon := \exp(\frac{2\pi i}{m}) \rightsquigarrow \widetilde{\sigma} \in \operatorname{Aut}(L\mathfrak{k}), \ t^j \otimes x \mapsto \varepsilon^{-j} t^j \otimes \sigma(x).$

• $L\mathfrak{k}_{\sigma} := (L\mathfrak{k})^{\sigma}$ (twisted loop algebra)

Kac-Moody algebras

Generalisations of simple, finite-dimensional, complex Lie algebras:

- $A \in Mat_n(\mathbb{Z})$: generalised Cartan matrix
- g(A) : assoc. Kac–Moody algebra (generators and relations)
- $\mathfrak{g}(A)$ finite-dimensional $\Leftrightarrow A$ is positive definite
- $\mathfrak{g}(A)$ affine : $\Leftrightarrow A$ positive semidefinite and $\operatorname{rk}(A) = n 1$ Realisation in the affine case:
 - $\mathfrak{k} := \mathfrak{g}(\overline{A})$ finite-dimensional, simple (\overline{A} : generic from A)
 - $L\mathfrak{k} := \mathbb{C}[t, t^{-1}] \otimes \mathfrak{k}$
 - $\sigma \in Aut(\mathfrak{k})$ with $\sigma^m = \mathbb{1}$ for $m \in \{1, 2, 3\}$
 - ▶ Set $\varepsilon := \exp(\frac{2\pi i}{m}) \rightsquigarrow \widetilde{\sigma} \in \operatorname{Aut}(L\mathfrak{k}), \ t^j \otimes x \mapsto \varepsilon^{-j} t^j \otimes \sigma(x).$
 - L𝔅_σ := (L𝔅)^σ (twisted loop algebra)

Theorem (Kac)

 $L\mathfrak{k}_{\sigma} \oplus K\mathbb{C} \oplus d\mathbb{C}$ is a realisation of $\mathfrak{g}(A)$ and $\mathfrak{g}(A)' = L\mathfrak{k}_{\sigma} \oplus K\mathbb{C}$, where K is the canonical central element and d acts as a derivation on $L\mathfrak{k}_{\sigma} \oplus K\mathbb{C}$.

Kac–Moody groups

Theorem (Kac)

 $L\mathfrak{k}_{\sigma} \oplus K\mathbb{C} \oplus d\mathbb{C}$ is a realisation of $\mathfrak{g}(A)$ and $\mathfrak{g}(A)' = L\mathfrak{k}_{\sigma} \oplus K\mathbb{C}$.

Kac–Moody groups

Theorem (Kac)

 $L\mathfrak{k}_{\sigma} \oplus K\mathbb{C} \oplus d\mathbb{C}$ is a realisation of $\mathfrak{g}(A)$ and $\mathfrak{g}(A)' = L\mathfrak{k}_{\sigma} \oplus K\mathbb{C}$.

The Tits functor $A \mapsto G(A)$ produces groups, associated to Kac-Moody algebras and a partially defined exponential function

$$x\mapsto \exp_{\mathcal{G}}(x) \ \ ext{for} \ \ x\in igcup_lpha \mathfrak{g}_lpha$$

Kac–Moody groups

Theorem (Kac)

 $L\mathfrak{k}_{\sigma} \oplus K\mathbb{C} \oplus d\mathbb{C}$ is a realisation of $\mathfrak{g}(A)$ and $\mathfrak{g}(A)' = L\mathfrak{k}_{\sigma} \oplus K\mathbb{C}$.

The Tits functor $A \mapsto G(A)$ produces groups, associated to Kac-Moody algebras and a partially defined exponential function

$$x\mapsto \exp_{G}(x)$$
 for $x\in igcup_{lpha}\mathfrak{g}_{lpha}$

Proposition

Let (V, π) be an integrable $\mathfrak{g}(A)'$ -module. Then there exists a unique homomorphism $\widetilde{\pi} : G(A) \to \operatorname{Aut}(V)$ satisfying

$$\exp \circ \pi(x) = \widetilde{\pi} \circ \exp_G(x)$$
 for $x \in \bigcup_{lpha} \mathfrak{g}_{lpha}$

This fact should (at least) be satisfied by each notion of a Kac–Moody group.

Twisted loop algebras and algebras of sections

- switch form the complex to the real case
- \mathfrak{k} : finite-dimensional Lie algebra, $\varphi \in \mathsf{Aut}(\mathfrak{k})$
- P_{φ} : Lie algebra-bundle over \mathbb{S}^1 with holonomy φ , i.e.

$$(\mathbb{R} imes \mathfrak{k})/\sim$$
 where $(x,y)\sim (x+1, arphi^{-1}(y))$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Twisted loop algebras and algebras of sections

- switch form the complex to the real case
- \mathfrak{k} : finite-dimensional Lie algebra, $\varphi \in \mathsf{Aut}(\mathfrak{k})$
- P_{φ} : Lie algebra-bundle over \mathbb{S}^1 with holonomy φ , i.e.

$$(\mathbb{R} imes \mathfrak{k})/\sim$$
 where $(x,y)\sim (x+1, arphi^{-1}(y))$

algebra of sections:

$$\Gamma P_{\varphi} \cong \{f: \mathbb{R} \to \mathfrak{k} : f(x+1) = \varphi^{-1}(f(x))\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

 \rightsquigarrow algebra of sections ${\sf \Gamma} P_{\varphi}$ is a twisted loop algebra

Twisted loop algebras and algebras of sections

- switch form the complex to the real case
- \mathfrak{k} : finite-dimensional Lie algebra, $arphi \in \mathsf{Aut}(\mathfrak{k})$
- P_{φ} : Lie algebra-bundle over \mathbb{S}^1 with holonomy φ , i.e.

$$(\mathbb{R} imes \mathfrak{k})/\sim$$
 where $(x,y)\sim (x+1, arphi^{-1}(y))$

algebra of sections:

$$\Gamma P_{\varphi} \cong \{f : \mathbb{R} \to \mathfrak{k} : f(x+1) = \varphi^{-1}(f(x))\}$$

 $\rightsquigarrow\,$ algebra of sections ${\sf \Gamma} P_{\varphi}$ is a twisted loop algebra

Problem

Construct central extensions $\widehat{\Gamma P_{\varphi}}$ and corresponding Lie groups $G(\widehat{\Gamma P_{\varphi}})$, satisfying the previous integrability condition.

Differential calculus in locally convex spaces

Definition (Milnor)

X, Y: locally convex spaces, $U \subseteq X$ open subset. A map $f: U \rightarrow Y$ is differentiable, if the differential quotients

$$df(x,v) := \lim_{h \to 0} \frac{f(x+hv) - f(x)}{h}$$

exist for each $v \in X$, and $(x, v) \mapsto df(x, v)$ is jointly continuous.

Differential calculus in locally convex spaces

Definition (Milnor)

X, Y: locally convex spaces, $U \subseteq X$ open subset. A map $f: U \rightarrow Y$ is differentiable, if the differential quotients

$$df(x,v) := \lim_{h \to 0} \frac{f(x+hv) - f(x)}{h}$$

exist for each $v \in X$, and $(x, v) \mapsto df(x, v)$ is jointly continuous.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- → smooth mappings
- → locally convex manifolds an Lie groups
 - differentiable mappings are continuous

Differential calculus in locally convex spaces

Definition (Milnor)

X, Y: locally convex spaces, $U \subseteq X$ open subset. A map $f: U \rightarrow Y$ is differentiable, if the differential quotients

$$df(x,v) := \lim_{h \to 0} \frac{f(x+hv) - f(x)}{h}$$

exist for each $v \in X$, and $(x, v) \mapsto df(x, v)$ is jointly continuous.

- → smooth mappings
- \rightsquigarrow locally convex manifolds an Lie groups
 - differentiable mappings are continuous

Example

- unit groups of Banach algebras
- mapping groups $C^{\infty}(M, G)$, sections in Lie group bundles $\Gamma \mathcal{K}$
- ▶ groups of diffeomorphisms Diff(M) for compact M

Cohomology groups for central extensions

Setting:

- ▶ 3: locally convex space,
- $\Gamma \subseteq \mathfrak{z}$: discrete subgroup $\rightsquigarrow Z := \mathfrak{z}/\Gamma$ with $\pi_1(Z) \cong \Gamma$
- G: connected l.c. Lie group with Lie algebra $\mathfrak{g} := L(G)$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

Cohomology groups for central extensions

Setting:

- 3: locally convex space,
- $\Gamma \subseteq \mathfrak{z}$: discrete subgroup $\rightsquigarrow Z := \mathfrak{z}/\Gamma$ with $\pi_1(Z) \cong \Gamma$
- G: connected l.c. Lie group with Lie algebra $\mathfrak{g} := L(G)$.

Lie algebra cocycle:

 $\omega:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{z},$ continuous, bilinear, alternating, satisfying

$$\omega([x,y],z) + \omega([y,z],x) + \omega([z,x],y) = 0$$

Lie group cocycle: $f: G \times G \rightarrow Z$, smooth at (e, e), satisfying ...

Cohomology groups for central extensions

Setting:

- 3: locally convex space,
- $\Gamma \subseteq \mathfrak{z}$: discrete subgroup $\rightsquigarrow Z := \mathfrak{z}/\Gamma$ with $\pi_1(Z) \cong \Gamma$
- G: connected l.c. Lie group with Lie algebra $\mathfrak{g} := L(G)$.

Lie algebra cocycle:

 $\omega:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{z},$ continuous, bilinear, alternating, satisfying

$$\omega([x,y],z) + \omega([y,z],x) + \omega([z,x],y) = 0$$

Lie group cocycle: $f: G \times G \rightarrow Z$, smooth at (e, e), satisfying ...

- \rightsquigarrow cohomology groups $H^2_c(\mathfrak{g},\mathfrak{z}), H^2_s(G,Z)$
- $\stackrel{\rightsquigarrow}{\longrightarrow} D: H^2_s(G, Z) \mapsto H^2_c(\mathfrak{g}, \mathfrak{z}), \ [f] \mapsto [(d^2f(e, e))_{\mathsf{asym}}]$ is well-defined

Central Extensions and smooth Lie group cohomology

Central extension of Lie algebras: linearly split exact sequence

$$0 \to \mathfrak{z} \to \widehat{\mathfrak{g}} \to \mathfrak{g} \to 0$$

Central extension of Lie groups: locally trivial exact sequence

$$1 \rightarrow Z \rightarrow \widehat{G} \rightarrow G \rightarrow 1$$

Central Extensions and smooth Lie group cohomology

Central extension of Lie algebras: linearly split exact sequence

$$0 \to \mathfrak{z} \to \widehat{\mathfrak{g}} \to \mathfrak{g} \to 0$$

Central extension of Lie groups: locally trivial exact sequence

$$1 \to Z \to \widehat{G} \to G \to 1$$

Theorem (Neeb (02))

With the canonical identifications $H^2_s(G, Z) \cong \operatorname{Ext}_{Lie}(G, Z)$ and $H^2_c(\mathfrak{g}, \mathfrak{z}) \cong \operatorname{Ext}_c(\mathfrak{g}, \mathfrak{z})$ there is an exact sequence

$$\operatorname{Hom}(\pi_1(G), Z) \to \operatorname{Ext}_{Lie}(G, Z) \xrightarrow{D} \\ \operatorname{Ext}_c(\mathfrak{g}, \mathfrak{z}) \xrightarrow{P} \operatorname{Hom}(\pi_2(G), Z) \oplus \operatorname{Hom}(\pi_1(G), \operatorname{Lin}(\mathfrak{g}, \mathfrak{z})),$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Central Extensions and smooth Lie group cohomology

Central extension of Lie algebras: linearly split exact sequence

$$0 \to \mathfrak{z} \to \widehat{\mathfrak{g}} \to \mathfrak{g} \to 0$$

Central extension of Lie groups: locally trivial exact sequence

$$1 \to Z \to \widehat{G} \to G \to 1$$

Theorem (Neeb (02))

With the canonical identifications $H^2_s(G, Z) \cong \operatorname{Ext}_{Lie}(G, Z)$ and $H^2_c(\mathfrak{g}, \mathfrak{z}) \cong \operatorname{Ext}_c(\mathfrak{g}, \mathfrak{z})$ there is an exact sequence

$$\operatorname{Hom}(\pi_1(G), Z) \to \operatorname{Ext}_{Lie}(G, Z) \xrightarrow{D} \\ \operatorname{Ext}_c(\mathfrak{g}, \mathfrak{z}) \xrightarrow{P} \operatorname{Hom}(\pi_2(G), Z) \oplus \operatorname{Hom}(\pi_1(G), \operatorname{Lin}(\mathfrak{g}, \mathfrak{z})),$$

⇒ the analysis of $P_1([\omega])$ is crucial for the integrability of a cocycle (resp. a central extension)

▶ £: finite-dimensional Lie algebra

- $\kappa : \mathfrak{k} \times \mathfrak{k} \to V$ biliniear, symmetric, $\kappa([x, y], z) = \kappa(x, [y, z])$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- ▶ $\kappa : \mathfrak{k} \times \mathfrak{k} \to V$ biliniear, symmetric, $\kappa([x, y], z) = \kappa(x, [y, z])$

• M compact, $\mathfrak{g} := C^{\infty}(M, \mathfrak{k}), \mathfrak{z} := \Omega^1(M, V)/dC^{\infty}(M, V)$

- $\kappa : \mathfrak{k} \times \mathfrak{k} \to V$ biliniear, symmetric, $\kappa([x, y], z) = \kappa(x, [y, z])$
- M compact, $\mathfrak{g} := C^{\infty}(M, \mathfrak{k})$, $\mathfrak{z} := \Omega^1(M, V)/dC^{\infty}(M, V)$

 $\rightsquigarrow \ \omega_{\kappa}:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{z} \quad (f,g)\mapsto [\kappa(f,dg)] \text{ is a Lie algebra cocycle:}$

▶ $\kappa : \mathfrak{k} \times \mathfrak{k} \to V$ biliniear, symmetric, $\kappa([x, y], z) = \kappa(x, [y, z])$

- M compact, $\mathfrak{g} := C^{\infty}(M, \mathfrak{k})$, $\mathfrak{z} := \Omega^1(M, V)/dC^{\infty}(M, V)$
- $\rightsquigarrow \ \omega_{\kappa}:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{z} \quad (f,g)\mapsto [\kappa(f,dg)] \text{ is a Lie algebra cocycle:}$
 - $[\kappa(f, dg) + \kappa(g, df)] = [\kappa(f, dg) + \kappa(df, g)] = [d\kappa(f, g)] = 0$

• $\kappa : \mathfrak{k} \times \mathfrak{k} \to V$ biliniear, symmetric, $\kappa([x, y], z) = \kappa(x, [y, z])$

• M compact, $\mathfrak{g} := C^{\infty}(M, \mathfrak{k})$, $\mathfrak{z} := \Omega^1(M, V)/dC^{\infty}(M, V)$

 $\rightsquigarrow \omega_{\kappa}:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{z} \quad (f,g)\mapsto [\kappa(f,dg)] \text{ is a Lie algebra cocycle:}$

• $[\kappa(f,dg) + \kappa(g,df)] = [\kappa(f,dg) + \kappa(df,g)] = [d\kappa(f,g)] = 0$

•
$$\begin{bmatrix} \kappa([f,g],dh) + \kappa([g,h],df) + \kappa([h,f],dg) \end{bmatrix} = \\ \begin{bmatrix} \kappa([f,g],dh) + \underbrace{\kappa([df,g],h) + \kappa([f,dg],h)} \end{bmatrix} = [d\kappa([f,g],h)] \\ = \kappa(d[f,g],h)$$

• $\kappa : \mathfrak{k} \times \mathfrak{k} \to V$ biliniear, symmetric, $\kappa([x, y], z) = \kappa(x, [y, z])$

• M compact, $\mathfrak{g} := C^{\infty}(M, \mathfrak{k})$, $\mathfrak{z} := \Omega^1(M, V)/dC^{\infty}(M, V)$

 $\rightsquigarrow \ \omega_{\kappa}:\mathfrak{g}\times\mathfrak{g}\to\mathfrak{z} \quad (f,g)\mapsto [\kappa(f,dg)] \text{ is a Lie algebra cocycle:}$

•
$$[\kappa(f,dg) + \kappa(g,df)] = [\kappa(f,dg) + \kappa(df,g)] = [d\kappa(f,g)] = 0$$

•
$$[\kappa([f,g],dh) + \kappa([g,h],df) + \kappa([h,f],dg)] = [\kappa([f,g],dh) + \underbrace{\kappa([df,g],h) + \kappa([f,dg],h)}_{=\kappa(d[f,g],h)} = [d\kappa([f,g],h)]$$

Theorem (Pressley, Segal (86); Maier, Neeb (03))

If κ is universal, then $P([\omega_{\kappa}])$ vanishes, i.e., the corresponding central extension of $C^{\infty}(M, \mathfrak{k})$ integrates to a central extension of $C^{\infty}(M, K)_0$. Moreover, both central extensions are universal.

• $P \rightarrow M$ principal K-bundle, (M compact)

- $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)

- $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)

• $\pi_0(K)$ -module $(V, \rho) \iff K$ -module with $K_0 \subseteq \ker(\rho)$)

- ▶ $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)

- $\pi_0(K)$ -module (V, ρ) ($\Leftrightarrow K$ -module with $K_0 \subseteq \ker(\rho)$)
- $\kappa : \mathfrak{k} \times \mathfrak{k} \to V$ bilinear, symmetric, *K*-equivariant

- $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)
- $\pi_0(K)$ -module $(V, \rho) \iff K$ -module with $K_0 \subseteq \ker(\rho)$
- $\kappa : \mathfrak{k} \times \mathfrak{k} \to V$ bilinear, symmetric, *K*-equivariant
- ▶ ∇ : connection on *P* (and on associated vector bundles)

- ▶ $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)
- $\pi_0(K)$ -module (V, ρ) (\Leftrightarrow K-module with $K_0 \subseteq \ker(\rho)$)
- $\kappa: \mathfrak{k} \times \mathfrak{k} \to V$ bilinear, symmetric, *K*-equivariant
- ▶ ∇ : connection on *P* (and on associated vector bundles)
- \rightsquigarrow associated vector bundles $\mathfrak{K} := P \times_{\mathsf{Ad}} \mathfrak{k}$ and $\mathbb{V} := P_0 \times_{\rho} V$

- ▶ $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)
- $\pi_0(K)$ -module (V, ρ) (\Leftrightarrow K-module with $K_0 \subseteq \ker(\rho)$)
- $\kappa: \mathfrak{k} \times \mathfrak{k} \to V$ bilinear, symmetric, *K*-equivariant
- ▶ ∇ : connection on *P* (and on associated vector bundles)
- \rightsquigarrow associated vector bundles $\mathfrak{K}:= P \times_{\mathsf{Ad}} \mathfrak{k}$ and $\mathbb{V}:= P_0 \times_{\rho} V$

 \rightsquigarrow induced maps between sections $\Gamma \kappa : \Gamma \mathfrak{K} \times \Gamma \mathfrak{K} \to \Gamma \mathbb{V}$

- ▶ $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)
- ▶ $\pi_0(K)$ -module (V, ρ) (\Leftrightarrow K-module with $K_0 \subseteq \ker(\rho)$)
- $\kappa: \mathfrak{k} \times \mathfrak{k} \to V$ bilinear, symmetric, *K*-equivariant
- ▶ ∇ : connection on *P* (and on associated vector bundles)
- \rightsquigarrow associated vector bundles $\mathfrak{K} := P \times_{\mathsf{Ad}} \mathfrak{k}$ and $\mathbb{V} := P_0 \times_{\rho} V$

- \rightsquigarrow induced maps between sections $\Gamma \kappa : \Gamma \mathfrak{K} \times \Gamma \mathfrak{K} \to \Gamma \mathbb{V}$
- $\mathfrak{g} := \Gamma \mathfrak{K}, \ \mathfrak{z} := \Omega^1(M, \mathbb{V})/d(\Gamma P_{\mathbb{V}})$

- ▶ $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)
- ▶ $\pi_0(K)$ -module (V, ρ) (\Leftrightarrow K-module with $K_0 \subseteq \ker(\rho)$)
- $\kappa: \mathfrak{k} \times \mathfrak{k} \to V$ bilinear, symmetric, *K*-equivariant
- ▶ ∇ : connection on *P* (and on associated vector bundles)
- \rightsquigarrow associated vector bundles $\mathfrak{K}:= P \times_{\mathsf{Ad}} \mathfrak{k}$ and $\mathbb{V}:= P_0 \times_\rho V$
- \rightsquigarrow induced maps between sections $\Gamma \kappa : \Gamma \mathfrak{K} \times \Gamma \mathfrak{K} \to \Gamma \mathbb{V}$

•
$$\mathfrak{g} := \Gamma \mathfrak{K}, \ \mathfrak{z} := \Omega^1(M, \mathbb{V})/d(\Gamma P_{\mathbb{V}})$$

 $\stackrel{\rightsquigarrow}{\longrightarrow} \widetilde{\omega_{\kappa,\nabla}} : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{z} \quad (f,g) \mapsto [\Gamma \kappa(f,\nabla g)] \text{ is a Lie algebra} \\ \text{cocycle}$

- ▶ $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)
- $\pi_0(K)$ -module (V, ρ) (\Leftrightarrow K-module with $K_0 \subseteq \ker(\rho)$)
- $\kappa: \mathfrak{k} \times \mathfrak{k} \to V$ bilinear, symmetric, *K*-equivariant
- ▶ ∇ : connection on *P* (and on associated vector bundles)
- \rightsquigarrow associated vector bundles $\mathfrak{K}:= P \times_{\mathsf{Ad}} \mathfrak{k}$ and $\mathbb{V}:= P_0 \times_\rho V$
- \rightsquigarrow induced maps between sections $\Gamma \kappa : \Gamma \mathfrak{K} \times \Gamma \mathfrak{K} \to \Gamma \mathbb{V}$

•
$$\mathfrak{g} := \Gamma \mathfrak{K}, \ \mathfrak{z} := \Omega^1(M, \mathbb{V})/d(\Gamma P_{\mathbb{V}})$$

 $\stackrel{\rightsquigarrow}{\longrightarrow} \widetilde{\omega_{\kappa,\nabla}} : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{z} \quad (f,g) \mapsto [\Gamma\kappa(f,\nabla g)] \text{ is a Lie algebra} \\ \text{cocycle}$

Proposition

Different choices of connections on P yield equivalent cocycles.

- $P \rightarrow M$ principal K-bundle, (M compact)
- $P_0 := P/K_0$ squeezed $\pi_0(K)$ -bundle (regular cover of M)
- $\pi_0(K)$ -module $(V, \rho) \iff K$ -module with $K_0 \subseteq \ker(\rho)$
- $\kappa: \mathfrak{k} \times \mathfrak{k} \to V$ bilinear, symmetric, *K*-equivariant
- ▶ ∇ : connection on *P* (and on associated vector bundles)
- \rightsquigarrow associated vector bundles $\mathfrak{K}:=P\times_{\mathsf{Ad}}\mathfrak{k}$ and $\mathbb{V}:=P_0\times_\rho V$
- \rightsquigarrow induced maps between sections $\Gamma \kappa : \Gamma \mathfrak{K} \times \Gamma \mathfrak{K} \to \Gamma \mathbb{V}$

•
$$\mathfrak{g} := \Gamma \mathfrak{K}, \ \mathfrak{z} := \Omega^1(M, \mathbb{V})/d(\Gamma P_{\mathbb{V}})$$

 $\stackrel{\rightsquigarrow}{\longrightarrow} \widetilde{\omega_{\kappa,\nabla}} : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{z} \quad (f,g) \mapsto [\Gamma\kappa(f,\nabla g)] \text{ is a Lie algebra} \\ \text{cocycle}$

Proposition

Different choices of connections on P yield equivalent cocycles.

Question

Is this cocycle universal, e.g., if ℓ is assumed to be simple? (This is true for trivial bundles!)

P₀ := P/K₀ is a π₀(K)-principal bundle, i.e., a regular cover of M with π₀(K) ≅ π₁(M)/π₁(P₀)

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- P₀ := P/K₀ is a π₀(K)-principal bundle, i.e., a regular cover of M with π₀(K) ≅ π₁(M)/π₁(P₀)
- $\Rightarrow \pi_0(K) \text{ acts on } P_0 \text{ and accordingly on } H_1(P_0) \text{ (canonical action of } \pi_1(M)/\pi_1(P_0) \text{ on } \pi_1(P_0)_{ab} \cong H_1(P_0) \text{ by conjugation})$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- P₀ := P/K₀ is a π₀(K)-principal bundle, i.e., a regular cover of M with π₀(K) ≅ π₁(M)/π₁(P₀)
- ⇒ $\pi_0(K)$ acts on P_0 and accordingly on $H_1(P_0)$ (canonical action of $\pi_1(M)/\pi_1(P_0)$ on $\pi_1(P_0)_{ab} \cong H_1(P_0)$ by conjugation)

Theorem (W. (07))

The group of sections $\Gamma \mathcal{K}$ in the Lie group bundle $\mathcal{K} := P \times_{conj} K$ ("gauge group") is an infinite-dimensional Lie group with Lie algebra $L(\Gamma \mathcal{K}) = \Gamma \mathfrak{K}$.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- P₀ := P/K₀ is a π₀(K)-principal bundle, i.e., a regular cover of M with π₀(K) ≅ π₁(M)/π₁(P₀)
- $\Rightarrow \pi_0(K) \text{ acts on } P_0 \text{ and accordingly on } H_1(P_0) \text{ (canonical action of } \pi_1(M)/\pi_1(P_0) \text{ on } \pi_1(P_0)_{ab} \cong H_1(P_0) \text{ by conjugation})$

Theorem (W. (07))

The group of sections $\Gamma \mathcal{K}$ in the Lie group bundle $\mathcal{K} := P \times_{conj} K$ ("gauge group") is an infinite-dimensional Lie group with Lie algebra $L(\Gamma \mathcal{K}) = \Gamma \mathfrak{K}$.

Theorem (Neeb, W. (07))

If κ is universal, $\pi_0(K)$ is finite and acts trivially on $H_1(P_0)$, then $P([\widetilde{\omega_{\kappa}}])$ vanishes, i.e., the corresponding central extension of $\Gamma \mathfrak{K}$ integrates to a central extension of $(\Gamma \mathcal{K})_0$.

Further Generalisations

- approach generalises to algebras/group of sections in Lie algebra- and Lie group bundles
- ► additional ingredient: smooth action \(\rho\) : \(K \times H \rightarrow Lie group bundle \(\mathcal{H}\) and Lie algebra bundle \(\mathcal{S}\).
- \blacktriangleright associated group and algebra of sections $\Gamma \mathcal{H}$ and $\Gamma \mathfrak{H}$
- all other ingredients compatible with this additional structure

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Further Generalisations

- approach generalises to algebras/group of sections in Lie algebra- and Lie group bundles
- ► additional ingredient: smooth action $\rho: K \times H \to H \rightsquigarrow$ Lie group bundle H and Lie algebra bundle H.
- \blacktriangleright associated group and algebra of sections $\Gamma \mathcal{H}$ and $\Gamma \mathfrak{H}$
- all other ingredients compatible with this additional structure

Example

- $K = \mathbb{T} \cong \mathbb{S}^1$, $H = C^{\infty}(\mathbb{S}^1, G)$ for finite-dim. Lie group G
- ► action: $\rho(t,\gamma)(t') = \gamma(t \cdot t') \Rightarrow \Gamma \mathcal{H} \cong C^{\infty}(P,G)$
- ► more generally, for N compact, Diff(N) acts canonically on $C^{\infty}(N, G)$ and a Diff(N)-principal bundle yields an associated fibre bundle $P_N = P \times_{\text{Diff}(N)} N$ with $\Gamma \mathcal{H} \cong C^{\infty}(P_N, G)$

Further Generalisations

- approach generalises to algebras/group of sections in Lie algebra- and Lie group bundles
- ► additional ingredient: smooth action \(\rho\) : \(K \times H → H \wow Lie group bundle \(\mathcal{H}\) and Lie algebra bundle \(\mathcal{S}\).
- \blacktriangleright associated group and algebra of sections $\Gamma \mathcal H$ and $\Gamma \mathfrak H$
- all other ingredients compatible with this additional structure

Example

- $K = \mathbb{T} \cong \mathbb{S}^1$, $H = C^{\infty}(\mathbb{S}^1, G)$ for finite-dim. Lie group G
- ► action: $\rho(t,\gamma)(t') = \gamma(t \cdot t') \Rightarrow \Gamma \mathcal{H} \cong C^{\infty}(P,G)$
- ► more generally, for N compact, Diff(N) acts canonically on $C^{\infty}(N, G)$ and a Diff(N)-principal bundle yields an associated fibre bundle $P_N = P \times_{\text{Diff}(N)} N$ with $\Gamma \mathcal{H} \cong C^{\infty}(P_N, G)$

Problem

Different connections do not lead to equivalent cocycles any more!

The route back to Kac–Moody groups

Theorem (Milnor (84))

If H is a regular Lie group, G is a simply connected Lie gorup, then each morphism $\varphi : L(G) \rightarrow L(H)$ lifts to a unique morphism $\Phi : G \rightarrow H$.

▲ロト ▲帰 ト ▲ヨト ▲ヨト - ヨ - の々ぐ

The route back to Kac–Moody groups

Theorem (Milnor (84))

If H is a regular Lie group, G is a simply connected Lie gorup, then each morphism $\varphi : L(G) \rightarrow L(H)$ lifts to a unique morphism $\Phi : G \rightarrow H$.

Corollary

- ▶ G simply connected, V Banach space
- ⇒ each representation $\varphi : L(G) \rightarrow End(V)$ lifts to a unique representation $\Phi : G \rightarrow GL(V)$

The route back to Kac–Moody groups

Theorem (Milnor (84))

If H is a regular Lie group, G is a simply connected Lie gorup, then each morphism $\varphi : L(G) \rightarrow L(H)$ lifts to a unique morphism $\Phi : G \rightarrow H$.

Corollary

- ▶ G simply connected, V Banach space
- ⇒ each representation $\varphi : L(G) \rightarrow End(V)$ lifts to a unique representation $\Phi : G \rightarrow GL(V)$
- ~> calculate the fundamental group of the constructed central extension

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

- K simply connected Lie group with Lie algebra $L(K) = \mathfrak{k}$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\varphi \in Aut(\mathfrak{k})$, lifting to $\Phi \in Aut(K)$

- K simply connected Lie group with Lie algebra $L(K) = \mathfrak{k}$
- $\varphi \in Aut(\mathfrak{k})$, lifting to $\Phi \in Aut(K)$
- P_{Φ} bundle (over \mathbb{S}^1) with holonomy Φ ,

$$\Gamma P_{\Phi} \cong \{ f : \mathbb{R} \to K : f(x+1) = \Phi^{-1}(f(x)) \}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

twisted loop group

- K simply connected Lie group with Lie algebra $L(K) = \mathfrak{k}$
- $\varphi \in Aut(\mathfrak{k})$, lifting to $\Phi \in Aut(K)$
- P_{Φ} bundle (over \mathbb{S}^1) with holonomy Φ ,

$$\Gamma P_{\Phi} \cong \{f : \mathbb{R} \to K : f(x+1) = \Phi^{-1}(f(x))\}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

twisted loop group

▶ P_{φ} bundle with holonomy φ , ΓP_{φ} twisted loop algebra

- K simply connected Lie group with Lie algebra $L(K) = \mathfrak{k}$
- $\varphi \in Aut(\mathfrak{k})$, lifting to $\Phi \in Aut(K)$
- P_{Φ} bundle (over \mathbb{S}^1) with holonomy Φ ,

$$\Gamma P_{\Phi} \cong \{f : \mathbb{R} \to K : f(x+1) = \Phi^{-1}(f(x))\}$$

twisted loop group

▶ P_{φ} bundle with holonomy φ , ΓP_{φ} twisted loop algebra

Fibration $ev_0: \Gamma P_\Phi o K$, $\gamma \mapsto \gamma(0)$ gives a long exact sequence

$$\ldots \to \pi_1(\underbrace{\ker(\mathsf{ev}_0)}_{\simeq \Omega K}) \to \pi_1(\Gamma P_{\Phi}) \to \pi_1(K) \to \ldots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

- K simply connected Lie group with Lie algebra $L(K) = \mathfrak{k}$
- $\varphi \in Aut(\mathfrak{k})$, lifting to $\Phi \in Aut(K)$
- P_{Φ} bundle (over \mathbb{S}^1) with holonomy Φ ,

$$\Gamma P_{\Phi} \cong \{f : \mathbb{R} \to K : f(x+1) = \Phi^{-1}(f(x))\}$$

twisted loop group

▶ P_{φ} bundle with holonomy φ , ΓP_{φ} twisted loop algebra

Fibration $ev_0: \Gamma P_\Phi \to K$, $\gamma \mapsto \gamma(0)$ gives a long exact sequence

$$\ldots \to \pi_1(\underbrace{\ker(\mathsf{ev}_0)}_{\simeq \Omega K}) \to \pi_1(\Gamma P_{\Phi}) \to \pi_1(K) \to \ldots$$

(日) (同) (三) (三) (三) (○) (○)

 $\Rightarrow \pi_1(\Gamma P_\Phi)$ vanishes, as $\pi_1(K)$ and $\pi_2(K)$ do

• Setting as on the previous slide, $\mathfrak{g} := \Gamma P_{\varphi}, \ G := (\Gamma P_{\Phi})_0$

• Setting as on the previous slide, $\mathfrak{g} := \Gamma P_{\varphi}$, $G := (\Gamma P_{\Phi})_0$

• $\kappa : \mathfrak{k} \times \mathfrak{k} \to \mathbb{R}$ Cartan–Killing form (universal, for \mathfrak{k} is *compact*)

 \rightsquigarrow yields a cocycle $\widetilde{\omega_\kappa}$ and a central extension

$$0 \to \mathfrak{z} \to \widehat{\mathfrak{g}} \to \mathfrak{g} \to 0$$

< □ > < 同 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• Setting as on the previous slide, $\mathfrak{g} := \Gamma P_{\varphi}$, $G := (\Gamma P_{\Phi})_0$

▶ $\kappa : \mathfrak{k} \times \mathfrak{k} \to \mathbb{R}$ Cartan-Killing form (universal, for \mathfrak{k} is *compact*)

 \rightsquigarrow yields a cocycle $\widetilde{\omega_\kappa}$ and a central extension

$$0 \to \mathfrak{z} \to \widehat{\mathfrak{g}} \to \mathfrak{g} \to 0$$

 \rightsquigarrow integrates, by the above theorem, to a central extension

$$1 \rightarrow Z \rightarrow \widehat{G} \rightarrow G \rightarrow 1$$

for some $Z = \mathfrak{z}/\Gamma$ and gives rise to an exact sequence

$$\ldots \rightarrow \pi_2(G) \xrightarrow{\delta} \pi_1(Z) \rightarrow \pi_1(\widehat{G}) \rightarrow \pi_1(G) \rightarrow \ldots$$

◆ロト ◆母 ▶ ◆ 臣 ▶ ◆ 臣 ▶ ● ④ ● ●

• Setting as on the previous slide, $\mathfrak{g} := \Gamma P_{\varphi}$, $G := (\Gamma P_{\Phi})_0$

▶ $\kappa : \mathfrak{k} \times \mathfrak{k} \to \mathbb{R}$ Cartan-Killing form (universal, for \mathfrak{k} is *compact*)

 \rightsquigarrow yields a cocycle $\widetilde{\omega_\kappa}$ and a central extension

$$0 \to \mathfrak{z} \to \widehat{\mathfrak{g}} \to \mathfrak{g} \to 0$$

 \rightsquigarrow integrates, by the above theorem, to a central extension

$$1 \rightarrow Z \rightarrow \widehat{G} \rightarrow G \rightarrow 1$$

for some $Z = \mathfrak{z}/\Gamma$ and gives rise to an exact sequence

$$\ldots \rightarrow \pi_2(G) \xrightarrow{\delta} \pi_1(Z) \rightarrow \pi_1(\widehat{G}) \rightarrow \pi_1(G) \rightarrow \ldots$$

 $\sim \rightarrow$ can choose Γ such that δ is surjective $\Rightarrow \pi_1(\widehat{G})$ vanishes

Lifting property for Kac–Moody groups

Proposition

For the cocycle

$$\Gamma P_{arphi} imes \Gamma P_{arphi} o \Omega^1(\mathbb{S}^1,\mathbb{V})/d(\Gamma\mathbb{V}), \ \ (f,g) \mapsto [\Gamma\kappa(f,
abla g)],$$

the corresponding central extension $\hat{\mathfrak{g}}$ of $\mathfrak{g} := \Gamma P_{\varphi}$ integrates to a central extension \hat{G} of $G := (\Gamma P_{\Phi})_0$. Moreover, each representation of $\hat{\mathfrak{g}}$ on a Banach space lifts to a unique representation of \hat{G} .

Lifting property for Kac–Moody groups

Proposition

For the cocycle

$$\Gamma P_{arphi} imes \Gamma P_{arphi} o \Omega^1(\mathbb{S}^1,\mathbb{V})/d(\Gamma\mathbb{V}), \ \ (f,g) \mapsto [\Gamma\kappa(f,
abla g)],$$

the corresponding central extension $\hat{\mathfrak{g}}$ of $\mathfrak{g} := \Gamma P_{\varphi}$ integrates to a central extension \widehat{G} of $G := (\Gamma P_{\Phi})_0$. Moreover, each representation of $\hat{\mathfrak{g}}$ on a Banach space lifts to a unique representation of \widehat{G} .

- → \hat{G} has the lifting property for the Kac–Moody algebra $\hat{\mathfrak{g}}$ → call \hat{G} the Kac–Moody group associated to $\varphi \in \operatorname{Aut}(\mathfrak{k})$
- $\stackrel{\sim}{\longrightarrow} \text{ generalisations as central extensions of } \Gamma\mathfrak{K} \text{ for } \mathfrak{K} = P \times_{\mathsf{Ad}} \mathfrak{k} \text{ for } \mathfrak{flat principal bundles } P \text{ seems to be appropriate}$
- → access to Aut(Γ \Re) as the group Aut(P) of bundle automorphisms (→ leads to Lie group structures on Aut(Γ \Re))