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Kac-Moody algebras

Generalisations of simple, finite-dimensional, complex Lie algebras:

I A ∈ Matn(Z) : generalised Cartan matrix

I g(A) : assoc. Kac–Moody algebra (generators and relations)

I g(A) finite-dimensional ⇔ A is positive definite

I g(A) affine :⇔ A positive semidefinite and rk(A) = n − 1

Realisation in the affine case:

I k := g(A) finite-dimensional, simple (A: generic from A)

I Lk := C[t, t−1]⊗ k

I σ ∈ Aut(k) with σm = 1 for m ∈ {1, 2, 3}
I Set ε := exp(2πi

m )  σ̃ ∈ Aut(Lk), t j ⊗ x 7→ ε−j t j ⊗ σ(x).

I Lkσ := (Lk)σ (twisted loop algebra)

Theorem (Kac)

Lkσ ⊕ KC⊕ dC is a realisation of g(A) and g(A)′ = Lkσ ⊕ KC,
where K is the canonical central element and d acts as a
derivation on Lkσ ⊕ KC.
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Kac–Moody groups

Theorem (Kac)

Lkσ ⊕ KC⊕ dC is a realisation of g(A) and g(A)′ = Lkσ ⊕ KC.

The Tits functor A 7→ G (A) produces groups, associated to
Kac-Moody algebras and a partially defined exponential function

x 7→ expG (x) for x ∈
⋃
α

gα

Proposition

Let (V , π) be an integrable g(A)′-module. Then there exists a
unique homomorphism π̃ : G (A) → Aut(V ) satisfying

exp ◦π(x) = π̃ ◦ expG (x) for x ∈
⋃
α

gα

This fact should (at least) be satisfied by each notion of a
Kac–Moody group.
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Twisted loop algebras and algebras of sections

I switch form the complex to the real case

I k : finite-dimensional Lie algebra, ϕ ∈ Aut(k)

I Pϕ : Lie algebra-bundle over S1 with holonomy ϕ, i.e.

(R× k)/ ∼ where (x , y) ∼ (x + 1, ϕ−1(y))

I algebra of sections:

ΓPϕ
∼= {f : R→ k : f (x + 1) = ϕ−1(f (x))}

 algebra of sections ΓPϕ is a twisted loop algebra

Problem
Construct central extensions Γ̂Pϕ and corresponding Lie groups

G (Γ̂Pϕ), satisfying the previous integrability condition.
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Differential calculus in locally convex spaces

Definition (Milnor)

X ,Y : locally convex spaces, U ⊆ X open subset. A map
f : U → Y is differentiable, if the differential quotients

df (x , v) := lim
h→0

f (x + hv)− f (x)

h

exist for each v ∈ X , and (x , v) 7→ df (x , v) is jointly continuous.

 smooth mappings
 locally convex manifolds an Lie groups
I differentiable mappings are continuous

Example

I unit groups of Banach algebras

I mapping groups C∞(M,G ), sections in Lie group bundles ΓK
I groups of diffeomorphisms Diff(M) for compact M

I direct limits of finite-dimensional Lie groups
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Cohomology groups for central extensions

Setting:

I z: locally convex space,

I Γ ⊆ z: discrete subgroup  Z := z/Γ with π1(Z ) ∼= Γ

I G : connected l.c. Lie group with Lie algebra g := L(G ).

Lie algebra cocycle:
ω : g× g → z, continuous, bilinear, alternating, satisfying

ω([x , y ], z) + ω([y , z ], x) + ω([z , x ], y) = 0

Lie group cocycle: f : G × G → Z , smooth at (e, e), satisfying . . .

 cohomology groups H2
c (g, z), H2

s (G ,Z )

 D : H2
s (G ,Z ) 7→ H2

c (g, z), [f ] 7→ [(d2f (e, e))asym]
is well-defined



Cohomology groups for central extensions

Setting:

I z: locally convex space,

I Γ ⊆ z: discrete subgroup  Z := z/Γ with π1(Z ) ∼= Γ

I G : connected l.c. Lie group with Lie algebra g := L(G ).

Lie algebra cocycle:
ω : g× g → z, continuous, bilinear, alternating, satisfying

ω([x , y ], z) + ω([y , z ], x) + ω([z , x ], y) = 0

Lie group cocycle: f : G × G → Z , smooth at (e, e), satisfying . . .

 cohomology groups H2
c (g, z), H2

s (G ,Z )

 D : H2
s (G ,Z ) 7→ H2

c (g, z), [f ] 7→ [(d2f (e, e))asym]
is well-defined



Cohomology groups for central extensions

Setting:

I z: locally convex space,

I Γ ⊆ z: discrete subgroup  Z := z/Γ with π1(Z ) ∼= Γ

I G : connected l.c. Lie group with Lie algebra g := L(G ).

Lie algebra cocycle:
ω : g× g → z, continuous, bilinear, alternating, satisfying

ω([x , y ], z) + ω([y , z ], x) + ω([z , x ], y) = 0

Lie group cocycle: f : G × G → Z , smooth at (e, e), satisfying . . .

 cohomology groups H2
c (g, z), H2

s (G ,Z )

 D : H2
s (G ,Z ) 7→ H2

c (g, z), [f ] 7→ [(d2f (e, e))asym]
is well-defined



Central Extensions and smooth Lie group cohomology

Central extension of Lie algebras: linearly split exact sequence

0 → z → ĝ → g → 0

Central extension of Lie groups: locally trivial exact sequence

1 → Z → Ĝ → G → 1

Theorem (Neeb (02))

With the canonical identifications H2
s (G ,Z ) ∼= ExtLie(G ,Z ) and

H2
c (g, z) ∼= Extc(g, z) there is an exact sequence

Hom(π1(G ),Z ) → ExtLie(G ,Z )
D−→

Extc(g, z)
P−→ Hom(π2(G ),Z )⊕ Hom(π1(G ), Lin(g, z)),

⇒ the analysis of P1([ω]) is crucial for the integrability of a
cocycle (resp. a central extension)
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Cocycles for mapping algebras (trivial bundles)

I k: finite-dimensional Lie algebra

I κ : k× k → V biliniear, symmetric, κ([x , y ], z) = κ(x , [y , z ])

I M compact, g := C∞(M, k), z := Ω1(M,V )/dC∞(M,V )

 ωκ : g× g → z (f , g) 7→ [κ(f , dg)] is a Lie algebra cocycle:

• [κ(f , dg) + κ(g , df )] = [κ(f , dg) + κ(df , g)] = [dκ(f , g)] = 0

• [κ([f , g ], dh) + κ([g , h], df ) + κ([h, f ], dg)] =
[κ([f , g ], dh) + κ([df , g ], h) + κ([f , dg ], h)︸ ︷︷ ︸

=κ(d [f ,g ],h)

] = [dκ([f , g ], h)]

Theorem (Pressley, Segal (86); Maier, Neeb (03))

If κ is universal, then P([ωκ]) vanishes, i.e., the corresponding
central extension of C∞(M, k) integrates to a central extension of
C∞(M,K )0. Moreover, both central extensions are universal.
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Cocycles for algebras of sections

I P → M principal K -bundle, (M compact)

I P0 := P/K0 squeezed π0(K )-bundle (regular cover of M)
I π0(K )-module (V , ρ) (⇔ K -module with K0 ⊆ ker(ρ))
I κ : k× k → V bilinear, symmetric, K -equivariant
I ∇: connection on P (and on associated vector bundles)

 associated vector bundles K := P ×Ad k and V := P0 ×ρ V

 induced maps between sections Γκ : ΓK× ΓK → ΓV
I g := ΓK, z := Ω1(M,V)/d(ΓPV)

 ω̃κ,∇ : g× g → z (f , g) 7→ [Γκ(f ,∇g)] is a Lie algebra
cocycle

Proposition

Different choices of connections on P yield equivalent cocycles.

Question
Is this cocycle universal, e.g., if k is assumed to be simple? (This is
true for trivial bundles!)
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Integrating the cocycle ω̃κ

I P0 := P/K0 is a π0(K )-principal bundle, i.e., a regular cover
of M with π0(K ) ∼= π1(M)/π1(P0)

⇒ π0(K ) acts on P0 and accordingly on H1(P0) (canonical action
of π1(M)/π1(P0) on π1(P0)ab ∼= H1(P0) by conjugation)

Theorem (W. (07))

The group of sections ΓK in the Lie group bundle K := P ×conj K
(“gauge group”) is an infinite-dimensional Lie group with Lie
algebra L(ΓK) = ΓK.

Theorem (Neeb, W. (07))

If κ is universal, π0(K ) is finite and acts trivially on H1(P0), then
P([ω̃κ]) vanishes, i.e., the corresponding central extension of ΓK

integrates to a central extension of (ΓK)0.
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Further Generalisations

I approach generalises to algebras/group of sections in Lie
algebra- and Lie group bundles

I additional ingredient: smooth action ρ : K × H → H  Lie
group bundle H and Lie algebra bundle H.

I associated group and algebra of sections ΓH and ΓH

I all other ingredients compatible with this additional structure

Example

I K = T ∼= S1, H = C∞(S1,G ) for finite-dim. Lie group G

I action: ρ(t, γ)(t ′) = γ(t · t ′) ⇒ ΓH ∼= C∞(P,G )

I more generally, for N compact, Diff(N) acts canonically on
C∞(N,G ) and a Diff(N)-principal bundle yields an associated
fibre bundle PN = P ×Diff(N) N with ΓH ∼= C∞(PN ,G )

Problem
Different connections do not lead to equivalent cocycles any more!
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The route back to Kac–Moody groups

Theorem (Milnor (84))

If H is a regular Lie group, G is a simply connected Lie gorup, then
each morphism ϕ : L(G ) → L(H) lifts to a unique morphism
Φ : G → H.

Corollary

I G simply connected, V Banach space

⇒ each representation ϕ : L(G ) → End(V ) lifts to a unique
representation Φ : G → GL(V )

 calculate the fundamental group of the constructed central
extension



The route back to Kac–Moody groups

Theorem (Milnor (84))

If H is a regular Lie group, G is a simply connected Lie gorup, then
each morphism ϕ : L(G ) → L(H) lifts to a unique morphism
Φ : G → H.

Corollary

I G simply connected, V Banach space

⇒ each representation ϕ : L(G ) → End(V ) lifts to a unique
representation Φ : G → GL(V )

 calculate the fundamental group of the constructed central
extension



The route back to Kac–Moody groups

Theorem (Milnor (84))

If H is a regular Lie group, G is a simply connected Lie gorup, then
each morphism ϕ : L(G ) → L(H) lifts to a unique morphism
Φ : G → H.

Corollary

I G simply connected, V Banach space

⇒ each representation ϕ : L(G ) → End(V ) lifts to a unique
representation Φ : G → GL(V )

 calculate the fundamental group of the constructed central
extension



Homotopy groups of twisted loop groups

I k finite-dimensional, simple and compact

I K simply connected Lie group with Lie algebra L(K ) = k

I ϕ ∈ Aut(k), lifting to Φ ∈ Aut(K )

I PΦ bundle (over S1) with holonomy Φ,

ΓPΦ
∼= {f : R→ K : f (x + 1) = Φ−1(f (x))}

twisted loop group

I Pϕ bundle with holonomy ϕ, ΓPϕ twisted loop algebra

Fibration ev0 : ΓPΦ → K , γ 7→ γ(0) gives a long exact sequence

. . . → π1(ker(ev0)︸ ︷︷ ︸
'ΩK

) → π1(ΓPΦ) → π1(K ) → . . .

⇒ π1(ΓPΦ) vanishes, as π1(K ) and π2(K ) do
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Homotopy groups of central extensions

I Setting as on the previous slide, g := ΓPϕ, G := (ΓPΦ)0

I κ : k× k → R Cartan–Killing form (universal, for k is compact)

 yields a cocycle ω̃κ and a central extension

0 → z → ĝ → g → 0

 integrates, by the above theorem, to a central extension

1 → Z → Ĝ → G → 1

for some Z = z/Γ and gives rise to an exact sequence

. . . → π2(G )
δ−→ π1(Z ) → π1(Ĝ ) → π1(G ) → . . .

 can choose Γ such that δ is surjective ⇒ π1(Ĝ ) vanishes
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1 → Z → Ĝ → G → 1

for some Z = z/Γ and gives rise to an exact sequence

. . . → π2(G )
δ−→ π1(Z ) → π1(Ĝ ) → π1(G ) → . . .

 can choose Γ such that δ is surjective ⇒ π1(Ĝ ) vanishes
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Lifting property for Kac–Moody groups

Proposition

For the cocycle

ΓPϕ × ΓPϕ → Ω1(S1,V)/d(ΓV), (f , g) 7→ [Γκ(f ,∇g)],

the corresponding central extension ĝ of g := ΓPϕ integrates to a

central extension Ĝ of G := (ΓPΦ)0. Moreover, each
representation of ĝ on a Banach space lifts to a unique
representation of Ĝ .

 Ĝ has the lifting property for the Kac–Moody algebra ĝ

 call Ĝ the Kac–Moody group associated to ϕ ∈ Aut(k)

 generalisations as central extensions of ΓK for K = P ×Ad k for
flat principal bundles P seems to be appropriate

 access to Aut(ΓK) as the group Aut(P) of bundle
automorphisms ( leads to Lie group structures on Aut(ΓK))
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