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Motivation for considering principal 2-bundles

Problem: Find geometric models for cohomology

Examples in differential topology

I H1(M,Z2): classifies spin structures on a spin manifold M

I H2(M,Z): classifies complex line bundles over M

I H3(M,Z): classifies P U(H)-bundles over M

Examples in group cohomology

I H1(G ,A) classifies sections of A o G → G

I H2(G ,A) classifies abelian extensions of G by A

Question: Is there a consistent procedure to construct these
models?  prinicpal 2-bundles (categorified principal bundles)
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From ordinary groups to 2-groups

Basic examples of groups: symmetric groups

G := Sym(X ) := {f : X → X |f bijective} for X a set

Properties:

I µ : G × G → G associative map (given by composition)

I 1 ∈ G and existence of inverses

 leads to the abstract notion of a group

Categorified version of a symmetric group

G := Sym(C) := {F : C → C|F equivalence} for C a category

Properties:

I G is a category with natural equivalences between functors
F ⇒ G

I µ : G × G → G associative functor (given by composition)

I 1 ∈ G and existence of inverses (by definition)

 leads to the abstract notion of a 2-group



2-groups

Definition
A 2-group is a small category G with a functor µ : G × G → G, an object
1 ∈ G and (coherent) natural equivalences

µ ◦ (µ× idG) ⇒ µ ◦ (idG ×G)

µ ◦ (1× idG) ⇒ idG ⇒ µ ◦ (idG ×1)

such that each morphism is invertible and for each g ∈ Obj(G) there
exists an g−1 with µ0(g , g−1) ∼= 1 and µ0(g

−1, g) ∼= 1.

Remark
2-groups are monoidal categories and morphisms between them are
monoidal functors.

2-groups are no 2-categories! Rather, in a 2-category, equivalences of
objects are 2-groups (compare with categories and groups).

A (coherent) 2-group, in which all natural equivalences are the identity, is
called a strict 2-group.



Examples of 2-groups

I C: category ⇒ Aut(G) is a 2-group (in general non-strict)

I X : topological space, x ∈ X  define Πx(X )

Obj(Πx(X )) := Ωx(X )

HomΠx (X )(f , g) := {homotopies F : f ⇒ g}

⇒ is a (non-strict) 2-group with the obvious compositions

I G : group ⇒ (G ,G ) is a (discrete) strict 2-group with all
structure maps idG and µ given by multiplication in G

I H: abelian group ⇒ (H, {∗}) is a strict 2-group

I β : H → G : crossed module ⇒ (G ,H o G ) is a strict 2-group
as follows



Crossed modules

Definition
A crossed module consists of a group homomorphism β : H → G
and an action G → Aut(H) such that

β(g .h) = g · β(h) · g−1 (equivariancy)

β(h).h = h · h′ · h−1 (Peiffer identity)

Note: • ker(β) ⊆ Z (H) follows from the Peiffer identity

• im(β)E G by equivariancy

Examples

I β : H → {∗} for H abelian

I inclusion of a normal subgroup β : N ↪→ G (β injective)

I central extension β : Ĝ → G (β surjective)



Crossed modules yield 2-groups

From a crossed module β : H → G , one constructs a 2-group Gβ

as follows. Put Obj(Gβ) = G , Mor(Gβ) = H o G and set

g = • (h,g)−−−→ • = β(h) · g .

Define composition in Gβ by(
• (h,g)−−−−→ • (h′,β(h)·g)−−−−−−−→ •

)
7→

(
• (h′·h,g)−−−−−→ •

)
and the multiplication functor µ : Gβ × Gβ → Gβ by(

• (h,g)−−−−→ •, • (h′,g ′)−−−−−→ •
)
7→

(
• (h·g .h′,g ·g ′)−−−−−−−−→ •

)
.

Theorem (folklore)

Each strict 2-group arises in this way from a crossed module



Smooth spaces

Definition
A smooth 2-space is a small category C, s.th. spaces of objects,
morphisms, composable tuples and triples of morphisms are smooth
manifolds and all structure maps are smooth. A functor (natural
transformation) is smooth, if the map it represents is so.

A 2-group is a Lie 2-group if it is a smooth 2-space and the functors (and
natural equivalences) defining the group structure are smooth.

A crossed module β : H → G is smooth if β and (g , h) 7→ g .h are
smooth maps.

Lemma
β : H → G a smooth crossed module ⇒ Gβ is a Lie 2-group.

 take smooth crossed modules as the working definition of a Lie
2-group.



Principal 2-bundles

Fix a Lie 2-group G := Gβ and a smooth 2-space M = (M,M)
with only identity morphisms (for M a smooth manifold).

Definition
A strict G-2-space is a smooth 2-space P and a smooth functor
ρ : P × G → P such that

ρ ◦ (ρ× idG) = ρ ◦ (idP ×µ) and ρ ◦ (idP ×1) = idP

(equality of functors). Similarly, one defines (strict) morphisms between
strict G-2-spaces.

A principal G-2-bundle over M is a strict G-2-space P, together with a
smooth morphism P →M, s.th. P is locally trivial over M. A bundle
morphism is a morphism F : P → P ′ of G-2-spaces satisfying π′ ◦ F = π.



Example: Lifting gerbes

Ingredients: • P → M an ordinary principal G -bundle

• β : Ĝ → G a central extension of G

 yields a principal Gβ-2-bundle P by setting

I Obj(P) = P, Hom(p, p′) = {p (p,p′,ĝ)−−−−→ p′ : p = p′ · β(ĝ)}
I composition in P:(

p
(p,p′,ĝ)−−−−→ p′

(p′,p′′,ĝ ′)−−−−−−→ p′′
)
7→

(
p

(p,p′′,ĝ ·ĝ ′)−−−−−−−→ p′′
)

I action of Gβ:

(p, g) 7→ p · g︸ ︷︷ ︸
on objects

(p, p′, ĝ), (ĝ ′, g) 7→ (p · g , p′ · (β(ĝ ′)g), g−1.(ĝ ĝ ′))︸ ︷︷ ︸
on morphisms

 local trivialisations of P yield local trivialisations of P.



Classification of principal 2-bundles

Definition
F : P → P ′ a bundle equivalence :⇔

ex. F ′ : P ′ → P with F ◦ F ′ ∼= idP ′ and F ′ ◦ F ∼= idP .

F is strict :⇔ F ◦ F ′ = idP ′ and F ′ ◦ F = idP on the nose.

Theorem (folklore, Bartels ’06, W.’08)

Principal Gβ-2-bundles over M are calssified (up to strict
equivalence) by H2(M,Gβ).

Remark

I H2(M,Gβ) is the “well-known” non-abelian Čech cohomology.

I β : {∗} → G ⇒ H2(M,Gβ) ∼= Ȟ1(M,G )

I β : H → {∗} ⇒ H2(M,Gβ) ∼= H2(M,A)

I β : H → G centr. ext ⇒ H2(M,Gβ) ∼= H2(M, ker(β))

I higher n-groups yield geometric models for higher cohomolgy



Gauge groups

Philosophy: Automorphism groups of geometric structures
(principal bundles) give rise to interesting (∞-dim.) Lie groups.

Reminder
P → M: principal G -bundle ⇒ C∞(P,G )G ∼= Gau(P) by the map

C∞(P,G )G 3 γ 7→ (p 7→ p · γ(p)) ∈ Gau(P)

(note: p · g · γ(p · g) = p · g · g−1 · γ(p) · g = p · γ(p) · g)

Theorem (Michor et.al. 90’s, W. ’07)

C∞(P,G )G is an infinite-dimensional Lie group, modelled on
C∞(P, g)G (if M is compact and exp : g → G is a local diffoem.).



Gauge 2-groups

Philosophy: Automorphism groups of principal 2-bundles give rise
to interesting ∞-dim. Lie 2-groups.

Lemma & Definition

P: principal G-2-bundle ⇒ Gau(P) := {F : P → P : F equiv.}
is a 2-group, the gauge 2-group of P.

Proposition

P →M: principal G-2-bundle ⇒ Gau(P) ∼= C∞(P,G)G

In particular, Gau(P) is strict.

Question: Lie 2-group structures on C∞(P,G)G?



C∞(P ,G)G as Lie 2-group

Fix β : H → G (thus G := Gβ) and P
I have a functor L : (Lie 2-groups)str → (Lie 2-algebras)str

I G acts strictly on L(G) by Ad : G → Aut(L(G))

I For Γ : P → G in C∞(P,G)G0 := Obj(C∞(P,G)G), one has

Γ0 ∈ C∞(P0,G0)
G0 (map on objects)

Γ1 ∈ C∞(P1,G1)
G1 (map on morphisms)

⇒ C∞(P,G)G0 ≤ C∞(P0,G0)
G0 × C∞(P1,G1)

G1 (closed)

I similar argument shows Mor(C∞(P,G)G) ∼= C∞(P0,H)G

I C∞(P0,H)G is Lie group, modelled on C∞(P0, L(H))G

Theorem (W. ’08)

M compact and expH , expH local diffoem.

⇒ C∞(P,G)G is strict Lie 2-group, modelled on C∞(P, L(G))G



Lifting gerbes

Ingredients: • P → M an ordinary principal G -bundle

• Z → Ĝ
β−→ G a central extension of G

 Obj(P) = P, HomP(p, p′) = {p (p,p′,ĝ)−−−−→ p′ : p = p′ · β(ĝ)}

⇒ C∞(P,G)G0
∼= C∞(P,G )G × C∞(M,Z )

C∞(P,G)G1
∼= C∞(P, Ĝ )G

Thus the Lie 2-group C∞(P,G)G is associated to the push-forward
crossed module

C∞(P, Ĝ )G
β∗−→ C∞(P,G )G × C∞(M,Z )

(note: C∞(P, Ĝ )G is the group of sections in P ×G Ĝ )



Groups of sections in Lie group bundles

Ingredients: • P → M an ordinary principal G -bundle
• G → Aut(H) an arbitrary smooth action

ΓH := C∞(P,H)G (group of sections of H := P ×G H)

is a Lie group, modelled on

Γh := C∞(P, L(H))G (algebra of sections of H := P ×G h)

Questions:

I criteria to view G → Aut(H) as crossed module
(e.g., H fin.-dim. semi-simple and G connected)

I ∞-dim. Lie theory for C∞(P,H)G

(i.part., extension theory, central extensions)

In the sequel:

Construct central extensions of C∞(P,H)G from the “canonical”
ones of C∞(P, L(H))G , using the machinery (Neeb ’02).



Central extensions of groups of section

I P0 := P/G0 squeezed π0(G )-bundle (regular cover of M)
I π0(G )-module (V , ρ) (⇔ G -module with G0 ⊆ ker(ρ))
I κ : h× h → V bilinear, symmetric, G -equivariant
I ∇: connection on P (and on associated vector bundles)

 associated vector bundle V := P0 ×ρ V

 induced maps between sections Γκ : ΓH× ΓH → ΓV
I h := ΓH, z := Ω1(M,V)/d(ΓV)

 ω := ω̃κ,∇ : h× h → z (f , g) 7→ [Γκ(f ,∇g)] is a cocycle

 central extension z ↪→ z⊕ω h� h

Theorem (Neeb, W. ’07)

If κ is universal and π0(G ) is finite, then the extension
z ↪→ z⊕ω h� h integrates (up to a curvature condition) to a

central extension of (̃ΓH)0.

I Curvature cond. is satisfied, e.g., if dim(H) ≤ ∞
I Is this central extension universal, e.g., if h is simple?



Example: Locally trivial bundles and Mapping groups

P → M: locally trivial bundle with compact fibre

I consider P̃ := ∪x∈M Diff(Px ,N).

⇒ P̃ is a Diff(N) principal bundle with P = P̃ ×Diff(N) Diff(N)

I for C∞(N,K ) for K arbitrary and consider the smooth
automorphisc Diff(N)-action (ϕ, f ) 7→ f ◦ ϕ−1

⇒ H := P̃ ×Diff(N) C∞(N,K ) is a Lie group bundle.

Proposition

ΓH := C∞(P̃,C∞(N,K ))Diff(N) ∼= C∞(P,K ).

Remark

I Example is contrary to crossed modules

I integration theory for central extensions breaks down
(integrality conditions cannot be checked easily, produces
manifest counterexamples)



Summary

I introduction to (Lie) 2-groups from elementary examples

I principal 2-bundles are classified by non-abelian (higher) Čech
cohomology (ex.: lifting gerbes)

I gauge groups of principal 2-bundles are Lie 2-groups

I central extensions for groups of sections

I for details, see preprints on www.wockel.eu

Thank you!
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