Approximation Theorems for Locally Convex Manifolds, Lie Groups and Principal Bundles

Christoph Wockel

Universität Göttingen

Locally convex vector spaces

Locally convex manifolds

Principal bundles

Locally convex vector spaces

Locally convex manifolds

Principal bundles

Preliminaries

- X: arbitrary topological space
- *M*: finite-dimensional paracompact connected manifold (possibly with boundary or corners)
- N: locally convex manifold

Topologies on function spaces

- C(M, X) compact open topology
- $C^{\infty}(M, N)$ initial topology w.r.t.

 $C^{\infty}(M,N) \ni f \mapsto T^k f \in C(T^k M, T^k N)$

Fact

For a locally convex space F, $C^{\infty}(M, F)$ is dense in C(M, F).

Fact

For a locally convex space F, $C^{\infty}(M, F)$ is dense in C(M, F).

Proof

• take $f \in C(M, F)$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Fact

For a locally convex space F, $C^{\infty}(M, F)$ is dense in C(M, F).

Proof

take *f* ∈ *C*(*M*, *F*) and a neighbourhood of *f*

Fact

For a locally convex space F, $C^{\infty}(M, F)$ is dense in C(M, F).

Proof

- take *f* ∈ *C*(*M*, *F*) and a neighbourhood of *f*
- locally, f can be approximated by constant functions

Fact

For a locally convex space F, $C^{\infty}(M, F)$ is dense in C(M, F).

Proof

- take *f* ∈ *C*(*M*, *F*) and a neighbourhood of *f*
- locally, *f* can be approximated by constant functions
- use partition of unity to interpolate between these local approximations

Fact

For a locally convex space F, $C^{\infty}(M, F)$ is dense in C(M, F).

Proof

- take *f* ∈ *C*(*M*, *F*) and a neighbourhood of *f*
- locally, f can be approximated by constant functions
- use partition of unity to interpolate between these local approximations

▲□▶▲□▶▲□▶▲□▶ □ のQ@

From locally convex spaces to locally convex manifolds

Problem

- construction uses convex combination to interpolate
- \Rightarrow not possible for functions with values in manifolds.
- → localised step-by-step smoothing process

From locally convex spaces to locally convex manifolds

Problem

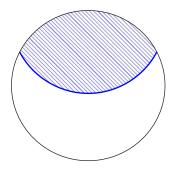
- construction uses convex combination to interpolate
- \Rightarrow not possible for functions with values in manifolds.
- → localised step-by-step smoothing process

Tool $V \subseteq F$ open, convex

Problem

- construction uses convex combination to interpolate
- \Rightarrow not possible for functions with values in manifolds.
- \rightsquigarrow localised step-by-step smoothing process

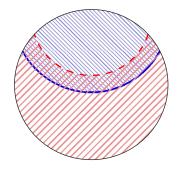
Tool $V \subseteq F$ open, convex $C \subset M$ closed



Problem

- construction uses convex combination to interpolate
- \Rightarrow not possible for functions with values in manifolds.
- → localised step-by-step smoothing process

Tool $V \subseteq F$ open, convex $C \subseteq M$ closed, $U \subseteq M$ open

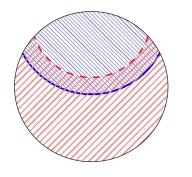


Problem

- · construction uses convex combination to interpolate
- \Rightarrow not possible for functions with values in manifolds.
- → localised step-by-step smoothing process

Tool

- $V \subseteq F$ open, convex
- $\mathcal{C} \subseteq \mathcal{M}$ closed, $\mathcal{U} \subseteq \mathcal{M}$ open
- $f \in C(M, V)$ smooth on $C \setminus U$



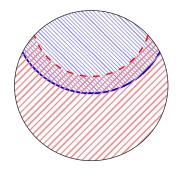
◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Problem

- construction uses convex combination to interpolate
- \Rightarrow not possible for functions with values in manifolds.
- → localised step-by-step smoothing process

Tool

- $V \subseteq F$ open, convex
- $\mathcal{C} \subseteq \mathcal{M}$ closed, $\mathcal{U} \subseteq \mathcal{M}$ open
 - $f \in C(M, V)$ smooth on $C \setminus U$
 - $\Rightarrow \exists \widetilde{f} \in C(M, V), \text{ smooth} \\ \text{ on } C \text{ arbitrarily close to } f$

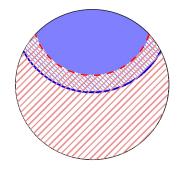


Problem

- construction uses convex combination to interpolate
- \Rightarrow not possible for functions with values in manifolds.
- \rightsquigarrow localised step-by-step smoothing process

Tool

- $V \subseteq F$ open, convex
- $\mathcal{C} \subseteq \mathcal{M}$ closed, $\mathcal{U} \subseteq \mathcal{M}$ open
 - $f \in C(M, V)$ smooth on $C \setminus U$
 - $\Rightarrow \exists \tilde{f} \in C(M, V), \text{ smooth} \\ \text{on } C \text{ arbitrarily close to } f \\ \sim \\ \end{cases}$
 - + f equals f on $M \setminus U$



Smoothing sections in locally trivial bundles

Theorem (Generalised Steenrod Approximation)

- ξ : E → M locally trivial smooth bundle with fibre a locally convex manifold
- $C \subseteq M$ closed, $U \subseteq M$ open
- $\sigma: M \rightarrow E$ section, smooth on $C \setminus U$
- O open neighbourhood of $\sigma(M)$

Smoothing sections in locally trivial bundles

Theorem (Generalised Steenrod Approximation)

- ξ : E → M locally trivial smooth bundle with fibre a locally convex manifold
- $C \subseteq M$ closed, $U \subseteq M$ open
- $\sigma: M \rightarrow E$ section, smooth on $C \setminus U$
- O open neighbourhood of $\sigma(M)$
- $\Rightarrow \exists$ section $\tau : M \rightarrow O$, smooth on C, equal to σ on $M \setminus U$
- $\Rightarrow \exists$ homotopy $R : [0, 1] \times M \rightarrow O$ with $R_0 = \sigma$ and $R_1 = \tau$

Smoothing sections in locally trivial bundles

Theorem (Generalised Steenrod Approximation)

- ξ : E → M locally trivial smooth bundle with fibre a locally convex manifold
- $C \subseteq M$ closed, $U \subseteq M$ open
- $\sigma: M \rightarrow E$ section, smooth on $C \setminus U$
- O open neighbourhood of $\sigma(M)$
- $\Rightarrow \exists$ section $\tau : M \rightarrow O$, smooth on C, equal to σ on $M \setminus U$
- $\Rightarrow \exists$ homotopy $R : [0, 1] \times M \rightarrow O$ with $R_0 = \sigma$ and $R_1 = \tau$

Corollary

- $S^{\infty}(E)$ is dense in S(E)
- $C^{\infty}(M, N)$ is dense in C(M, N) (even in graph topology)
- smooth and continuous homotopies agree (Kriegl, Michor)

Application: Gauge groups

The gauge group

- G locally convex Lie group (locally exponential)
- $\pi: P \rightarrow M$ smooth principal *G*-bundle (*M* compact)
- AD(P) associated *G*-bundle (by $AD(g).h = g \cdot h \cdot g^{-1}$)
- $\operatorname{Gau}^{\infty}(P) := S^{\infty}(AD(P)), \operatorname{Gau}(P) := S(AD(P))$

(日) (日) (日) (日) (日) (日) (日)

Application: Gauge groups

The gauge group

- G locally convex Lie group (locally exponential)
- $\pi: P \rightarrow M$ smooth principal *G*-bundle (*M* compact)
- AD(P) associated *G*-bundle (by $AD(g).h = g \cdot h \cdot g^{-1}$)
- $\operatorname{Gau}^{\infty}(P) := S^{\infty}(AD(P)), \operatorname{Gau}(P) := S(AD(P))$

Theorem

- $\operatorname{Gau}^{\infty}(P)$ and $\operatorname{Gau}(P)$ are infinite-dimensional Lie groups
- $\operatorname{Gau}^{\infty}(P)$ is dense in $\operatorname{Gau}(P)$
- $\operatorname{Gau}^{\infty}(P) \hookrightarrow \operatorname{Gau}(P)$ is a weak homotopy equivalence

Application: Gauge groups

The gauge group

- G locally convex Lie group (locally exponential)
- $\pi: P \rightarrow M$ smooth principal *G*-bundle (*M* compact)
- AD(P) associated *G*-bundle (by $AD(g).h = g \cdot h \cdot g^{-1}$)
- $\operatorname{Gau}^{\infty}(P) := S^{\infty}(AD(P)), \operatorname{Gau}(P) := S(AD(P))$

Theorem

- $\operatorname{Gau}^{\infty}(P)$ and $\operatorname{Gau}(P)$ are infinite-dimensional Lie groups
- $\operatorname{Gau}^{\infty}(P)$ is dense in $\operatorname{Gau}(P)$
- $\operatorname{Gau}^{\infty}(P) \hookrightarrow \operatorname{Gau}(P)$ is a weak homotopy equivalence

Note: Reduces determination of $\pi_n(\text{Gau}^{\infty}(P))$ to a purely topological setting, more appropriate for bundle theory

Application: Smoothing finite-dim. principal bundles

Facts

- Only need to consider compact G
- principal bundle given by a classifying map $f_P: M \to BG$
- bundle equivalences given by homotopies $f_P \simeq f_{P'}$

Application: Smoothing finite-dim. principal bundles Facts

- Only need to consider compact G
- principal bundle given by a classifying map $f_P: M \to BG$
- bundle equivalences given by homotopies $f_P \simeq f_{P'}$

$$BG = \lim O(n,k)/O(n-k) \times G$$
, where $G \hookrightarrow O(k)$

Application: Smoothing finite-dim. principal bundles Facts

- Only need to consider compact G
- principal bundle given by a classifying map $f_P: M \to BG$
- bundle equivalences given by homotopies $f_P \simeq f_{P'}$

$$BG = \lim O(n,k)/O(n-k) \times G$$
, where $G \hookrightarrow O(k)$

Consequences

- BG is a smooth manifold (Glöckner)
- $\pi: P \to M$ is smooth $\Leftrightarrow f_P: M \to BG$ is smooth
- \Rightarrow smoothing bundles and bundle equivalences

(日) (日) (日) (日) (日) (日) (日)

Application: Smoothing finite-dim. principal bundles

Facts

- Only need to consider compact G
- principal bundle given by a classifying map $f_P: M \to BG$
- bundle equivalences given by homotopies $f_P \simeq f_{P'}$

 $BG = \lim O(n, k) / O(n - k) \times G$, where $G \hookrightarrow O(k)$

Consequences

- BG is a smooth manifold (Glöckner)
- $\pi: P \to M$ is smooth $\Leftrightarrow f_P: M \to BG$ is smooth
- \Rightarrow smoothing bundles and bundle equivalences
- need smooth structure on classifying space, which are not available in general

(日) (日) (日) (日) (日) (日) (日)

Application: Smoothing finite-dim. principal bundles

Facts

- Only need to consider compact G
- principal bundle given by a classifying map $f_P: M \to BG$
- bundle equivalences given by homotopies $f_P \simeq f_{P'}$

 $BG = \lim O(n, k) / O(n - k) \times G$, where $G \hookrightarrow O(k)$

Consequences

- BG is a smooth manifold (Glöckner)
- $\pi: P \to M$ is smooth $\Leftrightarrow f_P: M \to BG$ is smooth
- \Rightarrow smoothing bundles and bundle equivalences
- need smooth structure on classifying space, which are not available in general
- → smoothing procedure for cocycles

Principal bundles and cocycles

M finite-dim. paracompact connected manifold *G* locally convex Lie group (possibly dim(G) = ∞)

Principal bundle

- $(U_i)_{i \in \mathbb{N}}$ locally finite open cover of M, $\overline{U_i}$ compact
- $g_{ij}: U_i \cap U_j \to G$ transition functions
 - $g_{ij}(x) \cdot g_{jk}(x) \cdot g_{ki}(x) = \mathbb{1}$ for $x \in U_i \cap U_j \cap U_k$
 - $g_{ii}(x) = \mathbb{1}$ for $x \in U_i \ (\Leftrightarrow g_{ij}(x) = g_{ji}(x)^{-1}$ for $x \in U_i \cap U_j)$

(日) (日) (日) (日) (日) (日) (日)

Principal bundles and cocycles

M finite-dim. paracompact connected manifold *G* locally convex Lie group (possibly dim(G) = ∞)

Principal bundle

- $(U_i)_{i \in \mathbb{N}}$ locally finite open cover of M, $\overline{U_i}$ compact
- $g_{ij}: U_i \cap U_j \to G$ transition functions
 - $g_{ij}(x) \cdot g_{jk}(x) \cdot g_{ki}(x) = \mathbb{1}$ for $x \in U_i \cap U_j \cap U_k$
 - $g_{ii}(x) = \mathbb{1}$ for $x \in U_i \ (\Leftrightarrow g_{ij}(x) = g_{ji}(x)^{-1}$ for $x \in U_i \cap U_j)$

In the sequel:

- principal bundle given by $\mathcal{G} = (g_{ij} : U_i \cap U_j \to G)_{i,j \in \mathbb{N}}$
- \mathcal{G} is continuous \Leftrightarrow all g_{ij} are continuous \mathcal{G} is smooth \Leftrightarrow all g_{ij} are smooth

Bundle equivalences

Observation Given:

- principal bundle $\mathcal{G} = (g_{ij}: U_i \cap U_j
 ightarrow \mathcal{K})_{i,j \in \mathbb{N}}$
- mappings $(f_i : U_i \to G)_{i \in \mathbb{N}}$ (smooth or continuous,

according to \mathcal{G})

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Bundle equivalences

Observation Given:

- principal bundle $\mathcal{G} = (g_{ij}: U_i \cap U_j o K)_{i,j \in \mathbb{N}}$
- mappings $(f_i : U_i \to G)_{i \in \mathbb{N}}$ (smooth or continuous,

according to \mathcal{G})

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

$$\Rightarrow h_{ij}(x) := f_i^{-1}(x) \cdot g_{ij}(x) \cdot f_j(x)$$

defines a new principal bundle ${\mathcal H}$

Bundle equivalences

Observation Given:

- principal bundle $\mathcal{G} = (g_{ij}: U_i \cap U_j o \mathcal{K})_{i,j \in \mathbb{N}}$
- mappings $(f_i : U_i \to G)_{i \in \mathbb{N}}$ (smooth or continuous,

according to \mathcal{G})

$$\Rightarrow h_{ij}(x) := f_i^{-1}(x) \cdot g_{ij}(x) \cdot f_j(x)$$

defines a new principal bundle $\ensuremath{\mathcal{H}}$

Equivalence of principal bundles

Two principal bundles

$$\mathcal{G} = (g_{ij}: U_i \cap U_j
ightarrow G)_{i,j \in \mathbb{N}}, \, \mathcal{H} = (h_{ij}: U_i \cap U_j
ightarrow G)_{i,j \in \mathbb{N}}$$

are *equivalent*, if there exists a bundle equivalence between them, i.e., $\mathcal{F} = (f_i : U_i \rightarrow G)_{i \in \mathbb{N}}$ with

$$h_{ij}(x) = f_i^{-1}(x) \cdot g_{ij}(x) \cdot f_j(x).$$

▲□▶▲□▶▲□▶▲□▶ □ のQ@

Examples of principal bundles

Example (Frame bundle)

 $\varphi_i : U_i \to \varphi(U_i) \subseteq \mathbb{R}^n$ differential structure on M

$$g_{ij} := U_i \cap U_j \ni x \mapsto d(\varphi_i \circ \varphi_j^{-1})(\varphi_j(x)) \in \mathrm{GL}_n(\mathbb{R})$$

Examples of principal bundles

Example (Frame bundle) $\varphi_i : U_i \to \varphi(U_i) \subseteq \mathbb{R}^n$ differential structure on M $g_{ij} := U_i \cap U_j \ni x \mapsto d(\varphi_i \circ \varphi_j^{-1})(\varphi_j(x)) \in \operatorname{GL}_n(\mathbb{R})$

•
$$d(\varphi_i \circ \varphi_j^{-1}) \cdot d(\varphi_j \circ \varphi_k^{-1}) \cdot d(\varphi_k \circ \varphi_i^{-1}) \equiv 1$$
 (Chain Rule)

•
$$d(\varphi_i \circ \varphi_i^{-1}) = d(\mathrm{id}_{\varphi(U_i)}) \equiv \mathbb{1}$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶

Examples of principal bundles

Example (Frame bundle) $\varphi_i : U_i \to \varphi(U_i) \subseteq \mathbb{R}^n$ differential structure on M $g_{ij} := U_i \cap U_j \ni x \mapsto d(\varphi_i \circ \varphi_j^{-1})(\varphi_j(x)) \in \operatorname{GL}_n(\mathbb{R})$ • $d(\varphi_i \circ \varphi_j^{-1}) \cdot d(\varphi_j \circ \varphi_k^{-1}) \cdot d(\varphi_k \circ \varphi_i^{-1}) \equiv \mathbb{1}$ (Chain Rule) • $d(\varphi_i \circ \varphi_i^{-1}) = d(\operatorname{id}_{\varphi(U_i)}) \equiv \mathbb{1}$

Example (Equivalence classes)

- (continuous) bundles over Sⁿ, classified by π_{n-1}(G)
 (bundles over hemispheres U_N, U_S are trivial, g_{NS} : U_N ∩ U_S ≅ Sⁿ⁻¹ → G is transition function)
- (continuous) line bundles, classified by $H^2(M; \mathbb{Z})$
- (continuous) $PU(\mathcal{H})$ -bundles, classified by $H^3(M; \mathbb{Z})$

Smoothing arbitrary principal bundles and bundle equivalences

Question

What is the relation between smooth and continuous principal bundles and bundle equivalences?

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Smoothing arbitrary principal bundles and bundle equivalences

Question

What is the relation between smooth and continuous principal bundles and bundle equivalences?

Theorem (Müller, W.)

Each continuous principal bundle is continuously equivalent to a smooth principal bundle. Moreover, two smooth principal bundles are smoothly equivalent if and only if they are continuously equivalent.

Smoothing arbitrary principal bundles and bundle equivalences

Question

What is the relation between smooth and continuous principal bundles and bundle equivalences?

Theorem (Müller, W.)

Each continuous principal bundle is continuously equivalent to a smooth principal bundle. Moreover, two smooth principal bundles are smoothly equivalent if and only if they are continuously equivalent.

Proof

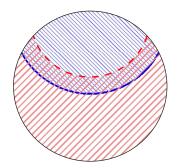
Uses method to smooth cocycles and avoid classifying spaces.

Smoothing Lie group valued mappings

- M finite-dimensional paracompact manifold
- G locally convex Lie group

Tool

- $C \subseteq M$ closed, $U \subseteq M$ open, $f \in C(M, G)$ smooth on $C \setminus U$
 - $\Rightarrow \exists \widetilde{f} \in C(M, G), \text{ smooth} \\ \text{ on } C \text{ arbitrarily close to } f$



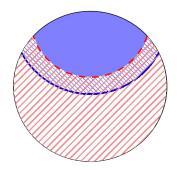
Smoothing Lie group valued mappings

- M finite-dimensional paracompact manifold
- G locally convex Lie group

Tool

- $C \subseteq M$ closed, $U \subseteq M$ open, $f \in C(M, G)$ smooth on $C \setminus U$

 - + f equals f on $M \setminus U$



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Smoothing bundle equivalences

Given smooth principal bundles

$$egin{aligned} \mathcal{G} &= (g_{ij}: U_i \cap U_j
ightarrow G)_{i,j \in \mathbb{N}} \ \mathcal{H} &= (h_{ij}: U_i \cap U_j
ightarrow G)_{i,j \in \mathbb{N}} \end{aligned}$$

(i.e., all g_{ij} , h_{ij} smooth) and a *continuous* equivalence

$$\mathcal{F} = (f_i : U_i \to G)_{i \in \mathbb{N}}$$

(i.e., all f_i continuous with $h_{ij} = f_i^{-1} \cdot g_{ij} \cdot f_j$)

Smoothing bundle equivalences

Given smooth principal bundles

$$egin{aligned} \mathcal{G} &= (m{g}_{ij}: m{U}_i \cap m{U}_j
ightarrow m{G})_{i,j \in \mathbb{N}} \ \mathcal{H} &= (m{h}_{ij}: m{U}_i \cap m{U}_j
ightarrow m{G})_{i,j \in \mathbb{N}} \end{aligned}$$

(i.e., all g_{ij} , h_{ij} smooth) and a *continuous* equivalence

$$\mathcal{F} = (f_i : U_i \to G)_{i \in \mathbb{N}}$$

(i.e., all f_i continuous with $h_{ij} = f_i^{-1} \cdot g_{ij} \cdot f_j$)

Wanted

smooth mappings $\widetilde{f}_i : U_i \to G$ with $h_{ij} = \widetilde{f}_i^{-1} \cdot g_{ij} \cdot \widetilde{f}_j$

◆□ ▶ ◆■ ▶ ◆ ■ ▶ ◆ ■ ● ● ● ●

Smoothing bundle equivalences

Given smooth principal bundles

$$egin{aligned} \mathcal{G} &= (m{g}_{ij}: m{U}_i \cap m{U}_j
ightarrow m{G})_{i,j \in \mathbb{N}} \ \mathcal{H} &= (m{h}_{ij}: m{U}_i \cap m{U}_j
ightarrow m{G})_{i,j \in \mathbb{N}} \end{aligned}$$

(i.e., all g_{ij} , h_{ij} smooth) and a *continuous* equivalence

$$\mathcal{F} = (f_i : U_i \to G)_{i \in \mathbb{N}}$$

(i.e., all f_i continuous with $h_{ij} = f_i^{-1} \cdot g_{ij} \cdot f_j$)

Wanted

smooth mappings $\widetilde{f}_i : U_i \to G$ with $h_{ij} = \widetilde{f}_i^{-1} \cdot g_{ij} \cdot \widetilde{f}_j$

Problem

ensure $h_{ij} = \tilde{f}_i^{-1} \cdot g_{ij} \cdot \tilde{f}_j$ during the smoothing procedure!

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

The idea of induction

$$\begin{array}{ll} \textbf{Idea}\\ \textbf{On} \ \textit{U}_i \cap \textit{U}_j & \textbf{h}_{ij} = \widetilde{f}_i^{-1} \cdot \textit{g}_{ij} \cdot \widetilde{f}_j & \Leftrightarrow & \widetilde{f}_i = \textit{g}_{ij} \cdot \widetilde{f}_j \cdot \textit{h}_{ji} \end{array}$$

・ロト・日本・日本・日本・日本・日本

The idea of induction

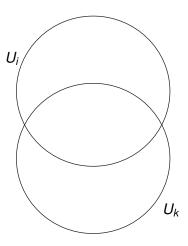
Idea
On
$$U_i \cap U_j$$
: $h_{ij} = \tilde{f}_i^{-1} \cdot g_{ij} \cdot \tilde{f}_j \iff \tilde{f}_i = g_{ij} \cdot \tilde{f}_j \cdot h_{ji}$
 $\Rightarrow \text{ Use } \tilde{f}_i = \underbrace{g_{ij} \cdot \tilde{f}_j \cdot h_{ji}}_{\text{smooth}}$, to define \tilde{f}_i inductively for $i = 1, 2, ...$

Locally convex manifolds

Principal bundles

Concrete description of the induction

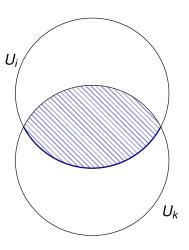
```
Let \tilde{f}_i be defined for i < k.
Then \tilde{f}_k is
```



◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ● ● ●

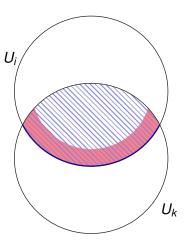
Let \tilde{f}_i be defined for i < k. Then f_k is

• defined on $U_k \cap \bigcup_{i < k} U_i$ $\widetilde{f}_k := g_{ki} \cdot \widetilde{f}_i \cdot h_{ik}$ by



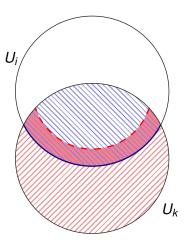
Let \tilde{f}_i be defined for i < k. Then f_k is

- defined on $U_k \cap \bigcup_{i < k} U_i$ by $\widetilde{f}_k := g_{ki} \cdot \widetilde{f}_i \cdot h_{ik}$
- "near" ∂U_i modified to f_k ,



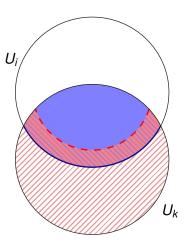
Let \tilde{f}_i be defined for i < k. Then \tilde{f}_k is

- defined on $U_k \cap \bigcup_{i < k} U_i$ by $\widetilde{f}_k := q_{ki} \cdot \widetilde{f}_i \cdot h_{ik}$
 - $T_k := g_{ki} \cdot T_i \cdot n_{ik}$
- "near" ∂U_i modified to f_k ,
- extended by f_k on $U_k \setminus \bigcup_{i < k} U_i$



Let \tilde{f}_i be defined for i < k. Then \tilde{f}_k is

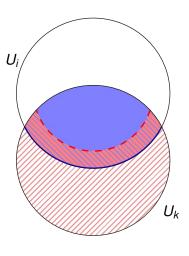
- defined on $U_k \cap \bigcup_{i < k} U_i$ by $\widetilde{f}_k := g_{ki} \cdot \widetilde{f}_i \cdot h_{ik}$
 - $r_k = g_{kl} \cdot r_l \cdot r_{lk}$
- "near" ∂U_i modified to f_k ,
- extended by f_k on $U_k \setminus \bigcup_{i < k} U_i$
- and, eventually, smoothed out.



Let \tilde{f}_i be defined for i < k. Then \tilde{f}_k is

- defined on $U_k \cap \bigcup_{i < k} U_i$ by $\widetilde{f}_k := q_{ki} \cdot \widetilde{f}_i \cdot h_{ik}$
 - $I_k = g_{ki} \cdot I_i \cdot I_{ik}$
- "near" ∂U_i modified to f_k ,
- extended by f_k on $U_k \setminus \bigcup_{i < k} U_i$
- and, eventually, smoothed out.

Problem We violate $\tilde{f}_k = g_{ki} \cdot \tilde{f}_i \cdot h_{ik}$ "near" ∂U_i !



◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

The safety margin

Remedy

"Capture" region, on which $\tilde{f}_k = g_{ki} \cdot \tilde{f}_i \cdot h_{ik}$ may be violated in a "safety margin", which is "near" ∂U_i .

(日) (日) (日) (日) (日) (日) (日)

The safety margin

Remedy

"Capture" region, on which $\tilde{f}_k = g_{ki} \cdot \tilde{f}_i \cdot h_{ik}$ may be violated in a "safety margin", which is "near" ∂U_i .

Observation $(V_i)_{i \in \mathbb{N}}$ open cover of M, $V_i \subseteq U_i$ and $\tilde{f}'_i : V_i \to G$ smooth with $\tilde{f}'_i = g_{ij} \cdot \tilde{f}'_j \cdot h_{ji}$ on $V_i \cap V_j$ $\Rightarrow \tilde{f}_k(x) := g_{ki}(x) \cdot \tilde{f}'_i(x) \cdot h_{ik}(x)$ for $x \in U_k \cap V_i$

defines a smooth bundle equivalence.

(日) (日) (日) (日) (日) (日) (日)

The safety margin

Remedy

"Capture" region, on which $\tilde{f}_k = g_{ki} \cdot \tilde{f}_i \cdot h_{ik}$ may be violated in a "safety margin", which is "near" ∂U_i .

Observation

 $(V_i)_{i \in \mathbb{N}}$ open cover of M, $V_i \subseteq U_i$ and $\widetilde{f}'_i : V_i \to G$ smooth with $\widetilde{f}'_i = g_{ij} \cdot \widetilde{f}'_j \cdot h_{ji}$ on $V_i \cap V_j$ $\Rightarrow \widetilde{f}_k(x) := g_{ki}(x) \cdot \widetilde{f}'_i(x) \cdot h_{ik}(x)$ for $x \in U_k \cap V_i$

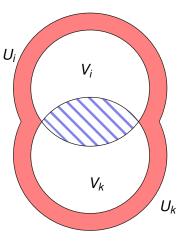
defines a *smooth* bundle equivalence.

Upshot

Bundle equivalence is determined by its values on a finer cover!

The safety margin

• choose $(V_i)_{i \in \mathbb{N}}$ with $\overline{V_i} \subseteq U_i$

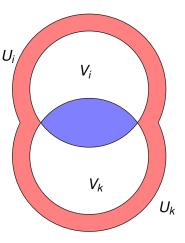


◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

The safety margin

- choose $(V_i)_{i \in \mathbb{N}}$ with $\overline{V_i} \subseteq U_i$
- guarantee

$$\widetilde{f}_k = g_{ki} \cdot \widetilde{f}_i \cdot h_{ik}$$
 on $V_k \cap V_i$



The safety margin

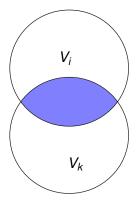
- choose $(V_i)_{i \in \mathbb{N}}$ with $\overline{V_i} \subseteq U_i$
- guarantee

$$\widetilde{f}_k = g_{ki} \cdot \widetilde{f}_i \cdot h_{ik}$$

on $V_k \cap V_i$

when all *f_i* are constructed, define

$$\widetilde{f}'_i := \widetilde{f}_i \Big|_{V_i}$$



▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

The safety margin

- choose $(V_i)_{i \in \mathbb{N}}$ with $\overline{V_i} \subseteq U_i$
- guarantee

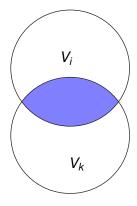
$$\widetilde{f}_k = g_{ki} \cdot \widetilde{f}_i \cdot h_{ik}$$

on $V_k \cap V_i$

when all *f_i* are constructed, define

$$\widetilde{f}'_i := \widetilde{f}_i \Big|_{V_i}$$

 \rightsquigarrow yields *smooth* bundle equivalence, uniquely determined by $\widetilde{f}'_i : V_i \rightarrow G$



Technical difficulties

Where are the difficulties?

- satisfy $\widetilde{f}_i = g_{ij} \cdot \widetilde{f}_j \cdot h_{ji}$
- extension from $U_k \cap \bigcup_{i < k} U_i$ to U_k

Solutions

- safety margin
- fade \widetilde{f}_k (on $U_k \cap \bigcup_{i < k} U_i$) out to f_k (on $U_k \setminus \bigcup_{i < k} U_i$)
 - by convex combination from $\tilde{f}_k \cdot f_k^{-1}$ to $\mathbb{1}$ (*G* is locally convex)
 - control smoothing procedure in the compact-open topology $\rightsquigarrow \tilde{f}_k \cdot f_k^{-1}$ has values in a fixed "convex" 1-neighbourhood

Technical difficulties

Where are the difficulties?

- satisfy $\widetilde{f}_i = g_{ij} \cdot \widetilde{f}_j \cdot h_{ji}$
- extension from $U_k \cap \bigcup_{i < k} U_i$ to U_k

Solutions

- safety margin
- fade \widetilde{f}_k (on $U_k \cap \bigcup_{i < k} U_i$) out to f_k (on $U_k \setminus \bigcup_{i < k} U_i$)
 - by convex combination from $\tilde{f}_k \cdot f_k^{-1}$ to $\mathbb{1}$ (*G* is locally convex)
 - control smoothing procedure in the compact-open topology $\rightsquigarrow \tilde{f}_k \cdot f_k^{-1}$ has values in a fixed "convex" 1-neighbourhood

Note: Only methods from elementary topology are used!

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Smoothing principal bundles

Given:

continuous principal bundle

$$\mathcal{G} = (g_{ij}: U_i \cap U_j
ightarrow G)_{i,j \in \mathbb{N}}$$

▲□▶▲□▶▲□▶▲□▶ □ のQで

Smoothing principal bundles

Given:

continuous principal bundle

$$\mathcal{G} = (g_{ij}: U_i \cap U_j \to G)_{i,j \in \mathbb{N}}$$

Wanted:

smooth principal bundle

$$\mathcal{H} = (h_{ij}: U_i \cap U_j \to G)_{i,j \in \mathbb{N}}$$

(i.e., $h_{ij} \cdot h_{jk} \cdot h_{ki} = 1$) and continuous bundle equivalence $\mathcal{F} = (f_i : U_i \to G)_{i \in \mathbb{N}}$ (i.e., $h_{ii} = f_i^{-1} \cdot g_{ii} \cdot f_i$)

Smoothing principal bundles

Given:

continuous principal bundle

$$\mathcal{G} = (g_{ij}: U_i \cap U_j \to G)_{i,j \in \mathbb{N}}$$

Wanted:

smooth principal bundle

$$\mathcal{H} = (h_{ij}: U_i \cap U_j \to G)_{i,j \in \mathbb{N}}$$

(i.e., $h_{ij} \cdot h_{jk} \cdot h_{ki} = 1$) and continuous bundle equivalence $\mathcal{F} = (f_i : U_i \to G)_{i \in \mathbb{N}}$

(i.e., $h_{ij} = f_i^{-1} \cdot g_{ij} \cdot f_j$)

$$\Rightarrow h_{ki} = h_{kj} \cdot h_{ji}$$

→ same inductive construction with appropriate order on tupels $(k, i) \in \mathbb{N} \times \mathbb{N}$

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

G locally convex Lie group, *M* finite-dim. paracompact

- Two smooth principal bundles are smoothly equivalent if and only if they are continuously equivalent.
- To each continuous principal bundle there exists a continuously equivalent smooth one.

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

Result

G locally convex Lie group, *M* finite-dim. paracompact

- Two smooth principal bundles are smoothly equivalent if and only if they are continuously equivalent.
- To each continuous principal bundle there exists a continuously equivalent smooth one.

- proof uses only elementary topological concepts
- proof avoids classifying spaces
- relative version "for free"

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● のへで

Applications

Non-abelian Čech cohomology Reformulation of the theorem

Applications

Non-abelian Čech cohomology

Reformulation of the theorem

Twisted K-theory

Element $c \in H^3(M; \mathbb{Z})$ describes "twisting" or ordinary *K*-theory (homotopy classes of sections in associated Fred(\mathcal{H})-bundle)

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 - 釣 < ⊙

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Applications

Non-abelian Čech cohomology

Reformulation of the theorem

Twisted K-theory

Element $c \in H^3(M; \mathbb{Z})$ describes "twisting" or ordinary *K*-theory (homotopy classes of sections in associated Fred(\mathcal{H})-bundle)

- c-twisted K-theory may be formulated "smoothly"
- construction of the twisted Chern Character

$$\mathsf{ch}: K_{\mathcal{C}}(M) \to H^*(M, \mathcal{C}),$$

needs existence of smooth structures on a principal $PU(\mathcal{H})$ -bundle corresponding to *c*.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ ▲ □ ● ● ● ●

Summary

step-by-step smoothing procedure for sections in locally trivial bundles

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

Summary

- step-by-step smoothing procedure for sections in locally trivial bundles
- "smooth and continuous homotopies agree" ~> smoothing procedure for finite-dimensional principal bundles

Summary

- step-by-step smoothing procedure for sections in locally trivial bundles
- "smooth and continuous homotopies agree" → smoothing procedure for finite-dimensional principal bundles
- if dim(G) = ∞, smooth structures on classifying spaces need not exist

Summary

- step-by-step smoothing procedure for sections in locally trivial bundles
- "smooth and continuous homotopies agree" ~> smoothing procedure for finite-dimensional principal bundles
- if dim(G) = ∞, smooth structures on classifying spaces need not exist
- smoothing procedure for arbitrary principal bundles and bundle equivalences

Summary

- step-by-step smoothing procedure for sections in locally trivial bundles
- "smooth and continuous homotopies agree" ~> smoothing procedure for finite-dimensional principal bundles
- if dim(G) = ∞, smooth structures on classifying spaces need not exist
- smoothing procedure for arbitrary principal bundles and bundle equivalences

Crucial points

- local compactness of *M* to "control" smoothing procedure
- local convexity of *G* to make "interpolation" work

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○ ◆ ○ ◆

References

C. Wockel

A Generalisation of Steenrod's Approximation Theorem *arXiv: math.DG/0610252*,

C. Müller, C. Wockel

Equivalences of Smooth and Continuous Principal Bundles with Infinite-Dimensional Structure Group *arXiv: math.DG/0604142*,

www.wockel.eu